Search results
Results from the WOW.Com Content Network
Semantic data mining is a subset of data mining that specifically seeks to incorporate domain knowledge, such as formal semantics, into the data mining process.Domain knowledge is the knowledge of the environment the data was processed in. Domain knowledge can have a positive influence on many aspects of data mining, such as filtering out redundant or inconsistent data during the preprocessing ...
Data preprocessing [ edit ] For the CLIP image models, the input images are preprocessed by first dividing each of the R, G, B values of an image by the maximum possible value, so that these values fall between 0 and 1, then subtracting by [0.48145466, 0.4578275, 0.40821073], and dividing by [0.26862954, 0.26130258, 0.27577711].
Given the variety of data sources (e.g. databases, business applications) that provide data and formats that data can arrive in, data preparation can be quite involved and complex. There are many tools and technologies [5] that are used for data preparation. The cost of cleaning the data should always be balanced against the value of the ...
Data about applicant's family and various other factors included. 12,960 Text Classification 1997 [480] [481] V. Rajkovic et al. University Dataset Data describing attributed of a large number of universities. None. 285 Text Clustering, classification 1988 [482] S. Sounders et al. Blood Transfusion Service Center Dataset
Feature standardization makes the values of each feature in the data have zero-mean (when subtracting the mean in the numerator) and unit-variance. This method is widely used for normalization in many machine learning algorithms (e.g., support vector machines , logistic regression , and artificial neural networks ).
Feature engineering in machine learning and statistical modeling involves selecting, creating, transforming, and extracting data features. Key components include feature creation from existing data, transforming and imputing missing or invalid features, reducing data dimensionality through methods like Principal Components Analysis (PCA), Independent Component Analysis (ICA), and Linear ...
Natural language processing (NLP) is a subfield of computer science and especially artificial intelligence.It is primarily concerned with providing computers with the ability to process data encoded in natural language and is thus closely related to information retrieval, knowledge representation and computational linguistics, a subfield of linguistics.
RapidMiner uses a client/server model with the server offered either on-premises or in public or private cloud infrastructures.. RapidMiner provides data mining and machine learning procedures including: data loading and transformation (ETL), data preprocessing and visualization, predictive analytics and statistical modeling, evaluation, and deployment.