Search results
Results from the WOW.Com Content Network
A circular chromosome is a chromosome in bacteria, archaea, mitochondria, and chloroplasts, in the form of a molecule of circular DNA, unlike the linear chromosome of most eukaryotes. Most prokaryote chromosomes contain a circular DNA molecule. This has the major advantage of having no free ends to the DNA.
The bacterial DNA is not packaged using histones to form chromatin as in eukaryotes but instead exists as a highly compact supercoiled structure, the precise nature of which remains unclear. [6] Most bacterial chromosomes are circular , although some examples of linear chromosomes exist (e.g. Borrelia burgdorferi ).
Circular DNA is DNA that forms a closed loop and has no ends. Examples include: Plasmids, mobile genetic elements; cccDNA, formed by some viruses inside cell nuclei; Circular bacterial chromosomes; Mitochondrial DNA (mtDNA) Chloroplast DNA (cpDNA), and that of other plastids; Extrachromosomal circular DNA (eccDNA)
Bacteria do not have a membrane-bound nucleus, and their genetic material is typically a single circular bacterial chromosome of DNA located in the cytoplasm in an irregularly shaped body called the nucleoid. [68] The nucleoid contains the chromosome with its associated proteins and RNA.
In many bacteria, the chromosome is a single covalently closed (circular) double-stranded DNA molecule that encodes the genetic information in a haploid form. The size of the DNA varies from 500,000 to several million base pairs (bp) encoding from 500 to several thousand genes depending on the organism. [2]
More than five decades ago, Jacob, Brenner, and Cuzin proposed the replicon hypothesis to explain the regulation of chromosomal DNA synthesis in E. coli. [18] The model postulates that a diffusible, trans-acting factor, a so-called initiator, interacts with a cis-acting DNA element, the replicator, to promote replication onset at a nearby origin.
The term plasmid was coined in 1952 by the American molecular biologist Joshua Lederberg to refer to "any extrachromosomal hereditary determinant." [11] [12] The term's early usage included any bacterial genetic material that exists extrachromosomally for at least part of its replication cycle, but because that description includes bacterial viruses, the notion of plasmid was refined over time ...
As DNA synthesis continues, the original DNA strands continue to unwind on each side of the bubble, forming a replication fork with two prongs. In bacteria, which have a single origin of replication on their circular chromosome, this process creates a "theta structure" (resembling the Greek letter theta: θ). In contrast, eukaryotes have longer ...