Search results
Results from the WOW.Com Content Network
These cores must comply fully with the ARM architecture. Companies that have designed cores that implement an ARM architecture include Apple, AppliedMicro (now: Ampere Computing), Broadcom, Cavium (now: Marvell), Digital Equipment Corporation, Intel, Nvidia, Qualcomm, Samsung Electronics, Fujitsu, and NUVIA Inc. (acquired by Qualcomm in 2021).
The ARM Cortex-A is a group of 32-bit and 64-bit RISC ARM processor cores licensed by Arm Holdings.The cores are intended for application use. The group consists of 32-bit only cores: ARM Cortex-A5, ARM Cortex-A7, ARM Cortex-A8, ARM Cortex-A9, ARM Cortex-A12, ARM Cortex-A15, ARM Cortex-A17 MPCore, and ARM Cortex-A32, 32/64-bit mixed operation cores: ARM Cortex-A35, ARM Cortex-A53, ARM Cortex ...
The ARM Cortex-M family are ARM microprocessor cores that are designed for use in microcontrollers, ASICs, ASSPs, FPGAs, and SoCs.Cortex-M cores are commonly used as dedicated microcontroller chips, but also are "hidden" inside of SoC chips as power management controllers, I/O controllers, system controllers, touch screen controllers, smart battery controllers, and sensor controllers.
This is a comparison of ARM instruction set architecture application processor cores designed by ARM Holdings (ARM Cortex-A) and 3rd parties. It does not include ARM Cortex-R, ARM Cortex-M, or legacy ARM cores.
ARM Cortex-A78: 2020 14 Out-of-order superscalar, register renaming, 4-way pipeline decode, 6 instruction per cycle, branch prediction, L3 cache ARM Cortex-A710: 2021 10 ARM Cortex-X1: 2020 13 5-wide decode out-of-order superscalar, L3 cache ARM Cortex-X2: 2021 10 ARM Cortex-X3: 2022 9 ARM Cortex-X4: 2023 10 AVR32 AP7: 7 AVR32 UC3: 3 Harvard ...
The ARM Cortex-R is a family of 32-bit and 64-bit RISC ARM processor cores licensed by Arm Ltd.The cores are optimized for hard real-time and safety-critical applications. Cores in this family implement the ARM Real-time (R) profile, which is one of three architecture profiles, the other two being the Application (A) profile implemented by the Cortex-A family and the Microcontroller (M ...
The Cortex-X1 design is based on the ARM Cortex-A78, but redesigned for purely performance instead of a balance of performance, power, and area (PPA). [1]The Cortex-X1 is a 5-wide decode out-of-order superscalar design with a 3K macro-OP (MOPs) cache.
The ARM Cortex-A8 is a 32-bit processor core licensed by ARM Holdings implementing the ARMv7-A architecture. Compared to the ARM11, the Cortex-A8 is a dual-issue superscalar design, achieving roughly twice the instructions per cycle. The Cortex-A8 was the first Cortex design to be adopted on a large scale in consumer devices. [2]