Search results
Results from the WOW.Com Content Network
Equation (2) is consistent with the First Law; even though the internal energy changes during the course of the cyclic process, when the cyclic process finishes the system's internal energy is the same as the energy it had when the process began. If the cyclic process moves clockwise around the loop, then will be positive, the cyclic machine ...
(1) A Thermodynamic process is a process in which the thermodynamic state of a system is changed. A change in a system is defined by a passage from an initial to a final state of thermodynamic equilibrium. In classical thermodynamics, the actual course of the process is not the primary concern, and often is ignored.
Every introductory thermodynamics text [15] [16] presents the fact that on such a plane the area under any curve is the heat transfer to the substance per mole, positive going from left to right and negative from right to left; moreover, in a cyclic process the net heat transfer to the substance is the area enclosed by the cycle's closed curve.
The first explicit statement of the first law of thermodynamics, by Rudolf Clausius in 1850, referred to cyclic thermodynamic processes, and to the existence of a function of state of the system, the internal energy. He expressed it in terms of a differential equation for the increments of a thermodynamic process. [16]
Suppose a function f(x, y, z) = 0, where x, y, and z are functions of each other. Write the total differentials of the variables = + = + Substitute dy into dx = [() + ()] + By using the chain rule one can show the coefficient of dx on the right hand side is equal to one, thus the coefficient of dz must be zero () + = Subtracting the second term and multiplying by its inverse gives the triple ...
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Help; Learn to edit; Community portal; Recent changes; Upload file
The cycle is reversible, meaning that if supplied with mechanical power, it can function as a heat pump for heating or cooling, and even for cryogenic cooling. The cycle is defined as a closed regenerative cycle with a gaseous working fluid. "Closed cycle" means the working fluid is permanently contained within the thermodynamic system.
Figure 1: A Carnot cycle illustrated on a PV diagram to illustrate the work done. Figure 2: A Carnot cycle acting as a heat engine, illustrated on a temperature-entropy diagram. The cycle takes place between a hot reservoir at temperature T H and a cold reservoir at temperature T C. The vertical axis is temperature, the horizontal axis is entropy.