enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Damping - Wikipedia

    en.wikipedia.org/wiki/Damping

    The damping ratio provides a mathematical means of expressing the level of damping in a system relative to critical damping. For a damped harmonic oscillator with mass m, damping coefficient c, and spring constant k, it can be defined as the ratio of the damping coefficient in the system's differential equation to the critical damping coefficient:

  3. Logarithmic decrement - Wikipedia

    en.wikipedia.org/wiki/Logarithmic_decrement

    The logarithmic decrement can be obtained e.g. as ln(x 1 /x 3).Logarithmic decrement, , is used to find the damping ratio of an underdamped system in the time domain.. The method of logarithmic decrement becomes less and less precise as the damping ratio increases past about 0.5; it does not apply at all for a damping ratio greater than 1.0 because the system is overdamped.

  4. Harmonic oscillator - Wikipedia

    en.wikipedia.org/wiki/Harmonic_oscillator

    = is called the "damping ratio". Step response of a damped harmonic oscillator; curves are plotted for three values of μ = ω 1 = ω 0 √ 1 − ζ 2. Time is in units of the decay time τ = 1/(ζω 0). The value of the damping ratio ζ critically determines the behavior of the system. A damped harmonic oscillator can be:

  5. Q factor - Wikipedia

    en.wikipedia.org/wiki/Q_factor

    The formula for the Q factor is: =, where M is the mass, k is the spring constant, and D is the damping coefficient, defined by the equation F damping = −Dv, where v is the velocity. [ 24 ] Acoustical systems

  6. RLC circuit - Wikipedia

    en.wikipedia.org/wiki/RLC_circuit

    Bode magnitude plot for the voltages across the elements of an RLC series circuit. Natural frequency ω 0 = 1 rad/s, damping ratio ζ = 0.4. Sinusoidal steady state is represented by letting s = jω, where j is the imaginary unit. Taking the magnitude of the above equation with this substitution:

  7. Root locus analysis - Wikipedia

    en.wikipedia.org/wiki/Root_locus_analysis

    Lines of constant damping ratio can be drawn radially from the origin and lines of constant natural frequency can be drawn as arccosine whose center points coincide with the origin. By selecting a point along the root locus that coincides with a desired damping ratio and natural frequency, a gain K can be calculated and implemented in the ...

  8. Mass-spring-damper model - Wikipedia

    en.wikipedia.org/wiki/Mass-spring-damper_model

    Classic model used for deriving the equations of a mass spring damper model. The mass-spring-damper model consists of discrete mass nodes distributed throughout an object and interconnected via a network of springs and dampers. This model is well-suited for modelling object with complex material properties such as nonlinearity and viscoelasticity.

  9. Settling time - Wikipedia

    en.wikipedia.org/wiki/Settling_time

    The settling time for a second order, underdamped system responding to a step response can be approximated if the damping ratio by = ⁡ () A general form is T s = − ln ⁡ ( tolerance fraction × 1 − ζ 2 ) damping ratio × natural freq {\displaystyle T_{s}=-{\frac {\ln({\text{tolerance fraction}}\times {\sqrt {1-\zeta ^{2}}})}{{\text ...