enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. List of datasets for machine-learning research - Wikipedia

    en.wikipedia.org/wiki/List_of_datasets_for...

    Train/test splits, labeled images, 1360 Images, text Classification 2006 [315] [316] M-E Nilsback et al. Plant Seedlings Dataset 12 category dataset of plant seedlings. Labelled images, segmented images, 5544 Images Classification, detection 2017 [317] Giselsson et al. Fruits-360 Database with images of 131 fruits and vegetables.

  3. List of manual image annotation tools - Wikipedia

    en.wikipedia.org/wiki/List_of_manual_image...

    Manual image annotation is the process of manually defining regions in an image and creating a textual description of those regions. Such annotations can for instance be used to train machine learning algorithms for computer vision applications. This is a list of computer software which can be used for manual annotation of images.

  4. scikit-learn - Wikipedia

    en.wikipedia.org/wiki/Scikit-learn

    scikit-learn (formerly scikits.learn and also known as sklearn) is a free and open-source machine learning library for the Python programming language. [3] It features various classification, regression and clustering algorithms including support-vector machines, random forests, gradient boosting, k-means and DBSCAN, and is designed to interoperate with the Python numerical and scientific ...

  5. SqueezeNet - Wikipedia

    en.wikipedia.org/wiki/SqueezeNet

    SqueezeNet is a deep neural network for image classification released in 2016. SqueezeNet was developed by researchers at DeepScale , University of California, Berkeley , and Stanford University . In designing SqueezeNet, the authors' goal was to create a smaller neural network with fewer parameters while achieving competitive accuracy.

  6. CIFAR-10 - Wikipedia

    en.wikipedia.org/wiki/CIFAR-10

    CIFAR-10 is a set of images that can be used to teach a computer how to recognize objects. Since the images in CIFAR-10 are low-resolution (32x32), this dataset can allow researchers to quickly try different algorithms to see what works. CIFAR-10 is a labeled subset of the 80 Million Tiny Images dataset from 2008, published in 2009. When the ...

  7. Comparison gallery of image scaling algorithms - Wikipedia

    en.wikipedia.org/wiki/Comparison_gallery_of...

    Examples of algorithms for this task include New Edge-Directed Interpolation (NEDI), [1] [2] Edge-Guided Image Interpolation (EGGI), [3] Iterative Curvature-Based Interpolation (ICBI), [citation needed] and Directional Cubic Convolution Interpolation (DCCI). [4] A study found that DCCI had the best scores in PSNR and SSIM on a series of test ...

  8. LightGBM - Wikipedia

    en.wikipedia.org/wiki/LightGBM

    LightGBM, short for Light Gradient-Boosting Machine, is a free and open-source distributed gradient-boosting framework for machine learning, originally developed by Microsoft. [4] [5] It is based on decision tree algorithms and used for ranking, classification and other machine learning tasks. The development focus is on performance and ...

  9. Contextual image classification - Wikipedia

    en.wikipedia.org/.../Contextual_image_classification

    As the image illustrated below, if only a small portion of the image is shown, it is very difficult to tell what the image is about. Mouth. Even try another portion of the image, it is still difficult to classify the image. Left eye. However, if we increase the contextual of the image, then it makes more sense to recognize. Increased field of ...