Search results
Results from the WOW.Com Content Network
Catalase is a common enzyme found in nearly all living organisms exposed to oxygen (such as bacteria, plants, and animals) which catalyzes the decomposition of hydrogen peroxide to water and oxygen. [5] It is a very important enzyme in protecting the cell from oxidative damage by reactive oxygen species (ROS).
Many endotherms have a larger amount of mitochondria per cell than ectotherms. This enables them to generate heat by increasing the rate at which they metabolize fats and sugars . Accordingly, to sustain their higher metabolism, endothermic animals typically require several times as much food as ectothermic animals do, and usually require a ...
For example, an enzyme that catalyzed this reaction would be an oxidoreductase: A – + B → A + B – In this example, A is the reductant (electron donor) and B is the oxidant (electron acceptor). In biochemical reactions, the redox reactions are sometimes more difficult to see, such as this reaction from glycolysis:
The enzyme cytochrome c oxidase or Complex IV (was EC 1.9.3.1, now reclassified as a translocase EC 7.1.1.9) is a large transmembrane protein complex found in bacteria, archaea, and the mitochondria of eukaryotes. [1] It is the last enzyme in the respiratory electron transport chain of cells located in the membrane.
This corresponds to a wet mass of about 1 picogram (pg), assuming that the cell consists mostly of water. The dry mass of a single cell can be estimated as 23% of the wet mass, amounting to 0.2 pg. About half of the dry mass of a bacterial cell consists of carbon, and also about half of it can be attributed to proteins.
Photosystem II (or water-plastoquinone oxidoreductase) is the first protein complex in the energy-dependent reactions of oxygenic photosynthesis. It is located in the thylakoid membrane of plants , algae , and cyanobacteria .
An extremozyme is an enzyme, often created by archaea, which are known prokaryotic extremophiles that can function under extreme environments. Examples of such are those in highly acidic/basic conditions, high/low temperatures, high salinity, or other factors, that would otherwise denature typical enzymes (e.g. catalase, rubisco, carbonic anhydrase). [1]
Oxidative phosphorylation is made up of two closely connected components: the electron transport chain and chemiosmosis. The electron transport chain in the cell is the site of oxidative phosphorylation. The NADH and succinate generated in the citric acid cycle are oxidized, releasing the energy of O 2 to power the ATP synthase.