Search results
Results from the WOW.Com Content Network
Nucleus Independent Chemical Shift (NICS) analysis is a method of computing the ring shielding (or deshielding) at the center of a ring system to predict aromaticity or antiaromaticity. A negative NICS value is indicative of aromaticity and a positive value is indicative of antiaromaticity. [9]
In organic chemistry, Hückel's rule predicts that a planar ring molecule will have aromatic properties if it has 4n + 2 π-electrons, where n is a non-negative integer. The quantum mechanical basis for its formulation was first worked out by physical chemist Erich Hückel in 1931.
In organic chemistry, Baird's rule estimates whether the lowest triplet state of planar, cyclic structures will have aromatic properties or not. The quantum mechanical basis for its formulation was first worked out by physical chemist N. Colin Baird at the University of Western Ontario in 1972.
In this method, negative NICS values indicate aromaticity, and positive values indicate antiaromaticity. [6] [7] There are a variety of methods to calculate NICS values, however, the most robust method for calculating NICS values involves scanning the molecule in a NICSzz scan. In this process, the NICS value is calculated above the rings, and ...
In organic chemistry, Möbius aromaticity is a special type of aromaticity believed to exist in a number of organic molecules. [ 1 ] [ 2 ] In terms of molecular orbital theory these compounds have in common a monocyclic array of molecular orbitals in which there is an odd number of out-of-phase overlaps, the opposite pattern compared to the ...
The discovery that [18]annulene possesses a number of key properties associated with other aromatic molecules was an important development in the understanding of aromaticity as a chemical concept. In the related annulynes , one double bond is replaced by a triple bond .
In addition to providing a unified explanation of diverse aspects of chemical reactivity and selectivity, it agrees with the predictions of the Woodward–Hoffmann orbital symmetry and Dewar–Zimmerman aromatic transition state treatments of thermal pericyclic reactions, which are summarized in the following selection rule:
Homoaromaticity, in organic chemistry, refers to a special case of aromaticity in which conjugation is interrupted by a single sp 3 hybridized carbon atom. Although this sp 3 center disrupts the continuous overlap of p-orbitals, traditionally thought to be a requirement for aromaticity, considerable thermodynamic stability and many of the spectroscopic, magnetic, and chemical properties ...