enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Matrix norm - Wikipedia

    en.wikipedia.org/wiki/Matrix_norm

    Suppose a vector norm ‖ ‖ on and a vector norm ‖ ‖ on are given. Any matrix A induces a linear operator from to with respect to the standard basis, and one defines the corresponding induced norm or operator norm or subordinate norm on the space of all matrices as follows: ‖ ‖, = {‖ ‖: ‖ ‖ =} = {‖ ‖ ‖ ‖:} . where denotes the supremum.

  3. Norm (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Norm_(mathematics)

    In mathematics, a norm is a function from a real or complex vector space to the non-negative real numbers that behaves in certain ways like the distance from the origin: it commutes with scaling, obeys a form of the triangle inequality, and is zero only at the origin.

  4. Matrix unit - Wikipedia

    en.wikipedia.org/wiki/Matrix_unit

    The group of scalar n-by-n matrices over a ring R is the centralizer of the subset of n-by-n matrix units in the set of n-by-n matrices over R. [2] The matrix norm (induced by the same two vector norms) of a matrix unit is equal to 1. When multiplied by another matrix, it isolates a specific row or column in arbitrary position.

  5. Operator norm - Wikipedia

    en.wikipedia.org/wiki/Operator_norm

    Dual norm – Measurement on a normed vector space; Matrix normNorm on a vector space of matrices; Norm (mathematics) – Length in a vector space; Normed space – Vector space on which a distance is defined; Operator algebra – Branch of functional analysis

  6. Vectorization (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Vectorization_(mathematics)

    For a symmetric matrix A, the vector vec(A) contains more information than is strictly necessary, since the matrix is completely determined by the symmetry together with the lower triangular portion, that is, the n(n + 1)/2 entries on and below the main diagonal.

  7. Matrix (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Matrix_(mathematics)

    For example, a 2,1 represents the element at the second row and first column of the matrix. In mathematics, a matrix (pl.: matrices) is a rectangular array or table of numbers, symbols, or expressions, with elements or entries arranged in rows and columns, which is used to represent a mathematical object or property of such an object.

  8. Normed vector space - Wikipedia

    en.wikipedia.org/wiki/Normed_vector_space

    An example of such a space is the Fréchet space (), whose definition can be found in the article on spaces of test functions and distributions, because its topology is defined by a countable family of norms but it is not a normable space because there does not exist any norm ‖ ‖ on () such that the topology this norm induces is equal to .

  9. Orthonormality - Wikipedia

    en.wikipedia.org/wiki/Orthonormality

    This definition can be formalized in Cartesian space by defining the dot product and specifying that two vectors in the plane are orthogonal if their dot product is zero. Similarly, the construction of the norm of a vector is motivated by a desire to extend the intuitive notion of the length of a vector to higher-dimensional spaces.