enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Heterotroph - Wikipedia

    en.wikipedia.org/wiki/Heterotroph

    A heterotroph (/ ˈ h ɛ t ər ə ˌ t r oʊ f,-ˌ t r ɒ f /; [1] [2] from Ancient Greek ἕτερος (héteros) 'other' and τροφή (trophḗ) 'nutrition') is an organism that cannot produce its own food, instead taking nutrition from other sources of organic carbon, mainly plant or animal matter. In the food chain, heterotrophs are ...

  3. Heterotrophic nutrition - Wikipedia

    en.wikipedia.org/wiki/Heterotrophic_nutrition

    All heterotrophs (except blood and gut parasites) have to convert solid food into soluble compounds which are capable of being absorbed (digestion). Then the soluble products of digestion for the organism are being broken down for the release of energy (respiration). All heterotrophs depend on autotrophs for their nutrition. Heterotrophic ...

  4. Consumer (food chain) - Wikipedia

    en.wikipedia.org/wiki/Consumer_(food_chain)

    An example is the koala, because it feeds only on eucalyptus leaves. Primary consumers that feed on many kinds of plants are called generalists. Secondary consumers are small/medium-sized carnivores that prey on herbivorous animals. Omnivores, which feed on both plants and animals, can be considered as being both primary and secondary consumers.

  5. Euglena - Wikipedia

    en.wikipedia.org/wiki/Euglena

    The species Euglena gracilis has been used extensively in the laboratory as a model organism. [4] Most species of Euglena have photosynthesizing chloroplasts within the body of the cell, which enable them to feed by autotrophy, like plants. However, they can also take nourishment heterotrophically, like animals.

  6. Primary nutritional groups - Wikipedia

    en.wikipedia.org/wiki/Primary_nutritional_groups

    Organotrophs use organic compounds as electron/hydrogen donors. Lithotrophs use inorganic compounds as electron/hydrogen donors.. The electrons or hydrogen atoms from reducing equivalents (electron donors) are needed by both phototrophs and chemotrophs in reduction-oxidation reactions that transfer energy in the anabolic processes of ATP synthesis (in heterotrophs) or biosynthesis (in autotrophs).

  7. Food web - Wikipedia

    en.wikipedia.org/wiki/Food_web

    The linkages in a food web illustrate the feeding pathways, such as where heterotrophs obtain organic matter by feeding on autotrophs and other heterotrophs. The food web is a simplified illustration of the various methods of feeding that link an ecosystem into a unified system of exchange.

  8. Photoheterotroph - Wikipedia

    en.wikipedia.org/wiki/Photoheterotroph

    Photoheterotrophs generate ATP using light, in one of two ways: [6] [7] they use a bacteriochlorophyll-based reaction center, or they use a bacteriorhodopsin.The chlorophyll-based mechanism is similar to that used in photosynthesis, where light excites the molecules in a reaction center and causes a flow of electrons through an electron transport chain (ETS).

  9. List of herbivorous animals - Wikipedia

    en.wikipedia.org/wiki/List_of_herbivorous_animals

    Herbivory is of extreme ecological importance and prevalence among insects.Perhaps one third (or 500,000) of all described species are herbivores. [4] Herbivorous insects are by far the most important animal pollinators, and constitute significant prey items for predatory animals, as well as acting as major parasites and predators of plants; parasitic species often induce the formation of galls.