enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Cantilever method - Wikipedia

    en.wikipedia.org/wiki/Cantilever_method

    The cantilever method is an approximate method for calculating shear forces and moments developed in beams and columns of a frame or structure due to lateral loads. The applied lateral loads typically include wind loads and earthquake loads, which must be taken into consideration while designing buildings.

  3. Deflection (engineering) - Wikipedia

    en.wikipedia.org/wiki/Deflection_(engineering)

    The elastic deflection and angle of deflection (in radians) at the free end in the example image: A (weightless) cantilever beam, with an end load, can be calculated (at the free end B) using: [1] = = where

  4. Cantilever - Wikipedia

    en.wikipedia.org/wiki/Cantilever

    Like other structural elements, a cantilever can be formed as a beam, plate, truss, or slab. When subjected to a structural load at its far, unsupported end, the cantilever carries the load to the support where it applies a shear stress and a bending moment. [1] Cantilever construction allows overhanging structures without additional support.

  5. Direct integration of a beam - Wikipedia

    en.wikipedia.org/wiki/Direct_integration_of_a_beam

    Simply supported beam with a constant 10 kN per meter load over a 15m length. Take the beam shown at right supported by a fixed pin at the left and a roller at the right. There are no applied moments, the weight is a constant 10 kN, and - due to symmetry - each support applies a 75 kN vertical force to the beam. Taking x as the distance from ...

  6. Euler–Bernoulli beam theory - Wikipedia

    en.wikipedia.org/wiki/Euler–Bernoulli_beam_theory

    For example, consider a static uniform cantilever beam of length with an upward point load applied at the free end. Using boundary conditions, this may be modeled in two ways. In the first approach, the applied point load is approximated by a shear force applied at the free end.

  7. Flexural modulus - Wikipedia

    en.wikipedia.org/wiki/Flexural_modulus

    For a 3-point test of a rectangular beam behaving as an isotropic linear material, where w and h are the width and height of the beam, I is the second moment of area of the beam's cross-section, L is the distance between the two outer supports, and d is the deflection due to the load F applied at the middle of the beam, the flexural modulus: [1]

  8. Structural engineering theory - Wikipedia

    en.wikipedia.org/wiki/Structural_engineering_theory

    Strength depends upon material properties. The strength of a material depends on its capacity to withstand axial stress, shear stress, bending, and torsion.The strength of a material is measured in force per unit area (newtons per square millimetre or N/mm², or the equivalent megapascals or MPa in the SI system and often pounds per square inch psi in the United States Customary Units system).

  9. Bending of plates - Wikipedia

    en.wikipedia.org/wiki/Bending_of_plates

    In the Kirchhoff–Love plate theory for plates the governing equations are [1], = and , = In expanded form, + = ; + = and + + = where () is an applied transverse load per unit area, the thickness of the plate is =, the stresses are , and