Search results
Results from the WOW.Com Content Network
The total kinetic energy of a system depends on the inertial frame of reference: it is the sum of the total kinetic energy in a center of momentum frame and the kinetic energy the total mass would have if it were concentrated in the center of mass.
The specific energy (energy per unit mass) of any space vehicle is composed of two components, the specific potential energy and the specific kinetic energy. The specific potential energy associated with a planet of mass M is given by =
A related quantity is the specific orbital energy which is essentially the sum of the kinetic and potential energy divided by the mass. An object has reached escape velocity when the specific orbital energy is greater than or equal to zero.
The International Space Station has an orbital period of 91.74 minutes (5504 s), hence by Kepler's Third Law the semi-major axis of its orbit is 6,738 km. [citation needed] The specific orbital energy associated with this orbit is −29.6 MJ/kg: the potential energy is −59.2 MJ/kg, and the kinetic energy 29.6 MJ/kg.
the kinetic energy of the system is equal to the absolute value of the total energy; the potential energy of the system is equal to twice the total energy; The escape velocity from any distance is √ 2 times the speed in a circular orbit at that distance: the kinetic energy is twice as much, hence the total energy is zero. [citation needed]
The energy and momentum of an object measured in two inertial frames in energy–momentum space – the yellow frame measures E and p while the blue frame measures E ′ and p ′. The green arrow is the four-momentum P of an object with length proportional to its rest mass m 0.
A space vehicle's flight is determined by application of Newton's second law of motion: =, where F is the vector sum of all forces exerted on the vehicle, m is its current mass, and a is the acceleration vector, the instantaneous rate of change of velocity (v), which in turn is the instantaneous rate of change of displacement.
In the simple case of a single particle moving with a constant velocity (thereby undergoing uniform linear motion), the action is the momentum of the particle times the distance it moves, added up along its path; equivalently, action is the difference between the particle's kinetic energy and its potential energy, times the duration for which ...