Search results
Results from the WOW.Com Content Network
Isotherms of an ideal gas for different temperatures. The curved lines are rectangular hyperbolae of the form y = a/x. They represent the relationship between pressure (on the vertical axis) and volume (on the horizontal axis) for an ideal gas at different temperatures: lines that are farther away from the origin (that is, lines that are nearer to the top right-hand corner of the diagram ...
The ideal gas law is the equation of state for an ideal gas, given by: = where P is the pressure; V is the volume; n is the amount of substance of the gas (in moles) T is the absolute temperature; R is the gas constant, which must be expressed in units consistent with those chosen for pressure, volume and temperature.
The basic gas laws were discovered by the end of the 18th century when scientists found out that relationships between pressure, volume and temperature of a sample of gas could be obtained which would hold to approximation for all gases. The combination of several empirical gas laws led to the development of the ideal gas law.
The equation modifies the ideal gas law in two ways. First its particles have a finite diameter, whereas the ideal gas consists of point particles with no extension. Second, its particles interact with one other, whereas the particles of an ideal gas move as though they were alone in the volume.
It is a physical constant that is featured in many fundamental equations in the physical sciences, such as the ideal gas law, the Arrhenius equation, and the Nernst equation. The gas constant is the constant of proportionality that relates the energy scale in physics to the temperature scale and the scale used for amount of substance. Thus, the ...
At present, there is no single equation of state that accurately predicts the properties of all substances under all conditions. An example of an equation of state correlates densities of gases and liquids to temperatures and pressures, known as the ideal gas law, which is roughly accurate for weakly polar gases at low pressures and moderate temperatures.
If one sets out to determine the specific volume of an ideal gas, such as super heated steam, using the equation ν = RT/P, where pressure is 2500 lbf/in 2, R is 0.596, temperature is 1960 °R. In that case, the specific volume would equal 0.4672 in 3 /lb.
The ideal gas equation can be rearranged to give an expression for the molar volume of an ideal gas: = = Hence, for a given temperature and pressure, the molar volume is the same for all ideal gases and is based on the gas constant: R = 8.314 462 618 153 24 m 3 ⋅Pa⋅K −1 ⋅mol −1, or about 8.205 736 608 095 96 × 10 −5 m 3 ⋅atm⋅K ...