Search results
Results from the WOW.Com Content Network
On September 23, 2024, to further the International Decade of Indigenous Languages, Hugging Face teamed up with Meta and UNESCO to launch a new online language translator [15] built on Meta's No Language Left Behind open-source AI model, enabling free text translation across 200 languages, including many low-resource languages. [16]
BigScience Large Open-science Open-access Multilingual Language Model (BLOOM) [1] [2] is a 176-billion-parameter transformer-based autoregressive large language model (LLM). The model, as well as the code base and the data used to train it, are distributed under free licences. [ 3 ]
Generative Pre-trained Transformer 2 (GPT-2) is a large language model by OpenAI and the second in their foundational series of GPT models. GPT-2 was pre-trained on a dataset of 8 million web pages. [2] It was partially released in February 2019, followed by full release of the 1.5-billion-parameter model on November 5, 2019. [3] [4] [5]
Open-source models are the antidote to today's concentration of power in AI technology, Wolf says. ... Hugging Face, of course, is the world’s leading repository for open-source AI models—the ...
Hugging Face's transformers library can manipulate large language models. [4] Jupyter Notebooks can execute cells of Python code, retaining the context between the execution of cells, which usually facilitates interactive data exploration. [5] Elixir is a high-level functional programming language based on the Erlang VM. Its machine-learning ...
Both models are commonly initialized using a pre-trained autoregressive language model. This model is then customarily trained in a supervised manner on a relatively small dataset of pairs of prompts to an assistant and their accompanying responses, written by human annotators. The reward model benefits from starting with a pre-trained model ...
The Latent Diffusion Model (LDM) [1] is a diffusion model architecture developed by the CompVis (Computer Vision & Learning) [2] group at LMU Munich. [ 3 ] Introduced in 2015, diffusion models (DMs) are trained with the objective of removing successive applications of noise (commonly Gaussian ) on training images.
The naming convention for these models often reflects the specific ViT architecture used. For instance, "ViT-L/14" means a "vision transformer large" (compared to other models in the same series) with a patch size of 14, meaning that the image is divided into 14-by-14 pixel patches before being processed by the transformer.