enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Gravity of Mars - Wikipedia

    en.wikipedia.org/wiki/Gravity_of_Mars

    Earth vs Mars vs Moon gravity at elevation. The gravity of Mars is a natural phenomenon, due to the law of gravity, or gravitation, by which all things with mass around the planet Mars are brought towards it. It is weaker than Earth's gravity due to the planet's smaller mass. The average gravitational acceleration on Mars is 3.72076 m/s 2 ...

  3. Weightlessness - Wikipedia

    en.wikipedia.org/wiki/Weightlessness

    At a distance relatively close to Earth (less than 3000 km), gravity is only slightly reduced. As an object orbits a body such as the Earth, gravity is still attracting objects towards the Earth and the object is accelerated downward at almost 1g.

  4. Mars - Wikipedia

    en.wikipedia.org/wiki/Mars

    Mars is less dense than Earth, having about 15% of Earth's volume and 11% of Earth's mass, resulting in about 38% of Earth's surface gravity. Mars is the only presently known example of a desert planet, a rocky planet with a surface akin to that of Earth's hot deserts.

  5. Gravity of Earth - Wikipedia

    en.wikipedia.org/wiki/Gravity_of_Earth

    Earth's gravity vs. distance from it, from the surface to 30 000 km Earth vs Mars vs Moon gravity at elevation. Gravity decreases with altitude as one rises above the Earth's surface because greater altitude means greater distance from the Earth's centre.

  6. Lagrange point - Wikipedia

    en.wikipedia.org/wiki/Lagrange_point

    The percentage columns show the distance from the orbit compared to the semimajor axis. E.g. for the Moon, L 1 is 326 400 km from Earth's center, which is 84.9% of the Earth–Moon distance or 15.1% "in front of" (Earthwards from) the Moon; L 2 is located 448 900 km from Earth's center, which is 116.8% of the Earth–Moon distance or 16.8% ...

  7. Space travel under constant acceleration - Wikipedia

    en.wikipedia.org/wiki/Space_travel_under...

    For the middle of the journey the ship's speed will be roughly the speed of light, and it will slow down again to zero over a year at the end of the journey. As a rule of thumb, for a constant acceleration at 1 g (Earth gravity), the journey time, as measured on Earth, will be the distance in light years to the destination, plus 1 year. This ...

  8. Free-return trajectory - Wikipedia

    en.wikipedia.org/wiki/Free-return_trajectory

    A two-year free return means from Earth to Mars (aborted there) and then back to Earth all in 2 years. [9] The entry corridor (range of permissible path angles) for landing on Mars is limited, and experience has shown that the path angle is hard to fix (e.g. +/- 0.5 deg). This limits entry into the atmosphere to less than 9 km/s.

  9. Escape velocity - Wikipedia

    en.wikipedia.org/wiki/Escape_velocity

    For an object of mass the energy required to escape the Earth's gravitational field is GMm / r, a function of the object's mass (where r is radius of the Earth, nominally 6,371 kilometres (3,959 mi), G is the gravitational constant, and M is the mass of the Earth, M = 5.9736 × 10 24 kg).