Search results
Results from the WOW.Com Content Network
In order for the solution method to work, as in linear equations, it is necessary to express every term in the nonlinear equation as a power series so that all of the terms may be combined into one power series. As an example, consider the initial value problem ″ + ′ + ′ =; = , ′ = which describes a solution to capillary-driven flow in ...
However, if the series is only known to be divergent, but for reasons other than diverging to infinity, then the claim of the theorem may fail: take, for example, the power series for +. At z = 1 {\\displaystyle z=1} the series is equal to 1 − 1 + 1 − 1 + ⋯ , {\\displaystyle 1-1+1-1+\\cdots ,} but 1 1 + 1 = 1 2 . {\\displaystyle {\\tfrac ...
In mathematics, a power series (in one variable) is an infinite series of the form = = + + + … where represents the coefficient of the nth term and c is a constant called the center of the series. Power series are useful in mathematical analysis , where they arise as Taylor series of infinitely differentiable functions .
The Cauchy product may apply to infinite series [1] [2] or power series. [3] [4] When people apply it to finite sequences [5] or finite series, that can be seen merely as a particular case of a product of series with a finite number of non-zero coefficients (see discrete convolution). Convergence issues are discussed in the next section.
An infinite series of any rational function of can be reduced to a finite series of polygamma functions, by use of partial fraction decomposition, [8] as explained here. This fact can also be applied to finite series of rational functions, allowing the result to be computed in constant time even when the series contains a large number of terms.
Alternatively, the equality can be justified by multiplying the power series on the left by 1 − x, and checking that the result is the constant power series 1 (in other words, that all coefficients except the one of x 0 are equal to 0). Moreover, there can be no other power series with this property.
There exist many types of convergence for a function series, such as uniform convergence, pointwise convergence, and convergence almost everywhere.Each type of convergence corresponds to a different metric for the space of functions that are added together in the series, and thus a different type of limit.
Faà di Bruno's formula gives coefficients of the composition of two formal power series in terms of the coefficients of those two series. Equivalently, it is a formula for the nth derivative of a composite function. Lagrange reversion theorem for another theorem sometimes called the inversion theorem; Formal power series#The Lagrange inversion ...