Search results
Results from the WOW.Com Content Network
The figure below allows a visual comparison of the equivalence test and the t-test when the sample size calculation is affected by differences between the a priori standard deviation and the sample's standard deviation ^, which is a common problem.
The table shown on the right can be used in a two-sample t-test to estimate the sample sizes of an experimental group and a control group that are of equal size, that is, the total number of individuals in the trial is twice that of the number given, and the desired significance level is 0.05. [4]
In statistics, an effect size is a value measuring the strength of the relationship between two variables in a population, or a sample-based estimate of that quantity. It can refer to the value of a statistic calculated from a sample of data, the value of a parameter for a hypothetical population, or to the equation that operationalizes how statistics or parameters lead to the effect size ...
Matched or independent study designs may be used. Power, sample size, and the detectable alternative hypothesis are interrelated. The user specifies any two of these three quantities and the program derives the third. A description of each calculation, written in English, is generated and may be copied into the user's documents.
nQuery is a clinical trial design platform used for the design and monitoring of adaptive, group sequential, and fixed sample size trials. It is most commonly used by biostatisticians to calculate sample size and statistical power for adaptive clinical trial design. nQuery is proprietary software developed and distributed by Statsols.
PASS is a computer program for estimating sample size or determining the power of a statistical test or confidence interval. NCSS LLC is the company that produces PASS. NCSS LLC also produces NCSS (for statistical analysis). PASS includes over 920 documented sample size and power procedures.
It is named after its inventor, Ronald Fisher, and is one of a class of exact tests, so called because the significance of the deviation from a null hypothesis (e.g., p-value) can be calculated exactly, rather than relying on an approximation that becomes exact in the limit as the sample size grows to infinity, as with many statistical tests.
If the sample size is 1,000, then the effective sample size will be 500. It means that the variance of the weighted mean based on 1,000 samples will be the same as that of a simple mean based on 500 samples obtained using a simple random sample.