enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Optical heterodyne detection - Wikipedia

    en.wikipedia.org/wiki/Optical_heterodyne_detection

    Array detection of light, i.e. detecting light in a large number of independent detector pixels, is common in digital camera image sensors. However, it tends to be quite difficult in heterodyne detection, since the signal of interest is oscillating (also called AC by analogy to circuits), often at millions of cycles per second or more. At the ...

  3. Optical transfer function - Wikipedia

    en.wikipedia.org/wiki/Optical_transfer_function

    In both cases the numerical aperture of the objective is 1.49 and the refractive index of the medium 1.52. The wavelength of the emitted light is assumed to be 600 nm and, in case of the confocal microscope, that of the excitation light 500 nm with circular polarization. A section is cut to visualize the internal intensity distribution.

  4. Optical microscope - Wikipedia

    en.wikipedia.org/wiki/Optical_microscope

    The optical microscope, also referred to as a light microscope, is a type of microscope that commonly uses visible light and a system of lenses to generate magnified images of small objects. Optical microscopes are the oldest design of microscope and were possibly invented in their present compound form in the 17th century.

  5. Interferometry - Wikipedia

    en.wikipedia.org/wiki/Interferometry

    Figure 1. The light path through a Michelson interferometer.The two light rays with a common source combine at the half-silvered mirror to reach the detector. They may either interfere constructively (strengthening in intensity) if their light waves arrive in phase, or interfere destructively (weakening in intensity) if they arrive out of phase, depending on the exact distances between the ...

  6. Phase-contrast microscopy - Wikipedia

    en.wikipedia.org/wiki/Phase-contrast_microscopy

    When light waves travel through a medium other than a vacuum, interaction with the medium causes the wave amplitude and phase to change in a manner dependent on properties of the medium. Changes in amplitude (brightness) arise from the scattering and absorption of light, which is often wavelength-dependent and may give rise to colors.

  7. Interferometric microscopy - Wikipedia

    en.wikipedia.org/wiki/Interferometric_microscopy

    As the combined image keeps both amplitude and phase information, the interferometric microscopy can be especially efficient for the phase objects, [3] allowing detection of light variations of index of refraction, which cause the phase shift or the light passing through for a small fraction of a radian.

  8. Light field microscopy - Wikipedia

    en.wikipedia.org/wiki/Light_field_microscopy

    Light field microscopy (LFM) is a scanning-free 3-dimensional (3D) microscopic imaging method based on the theory of light field.This technique allows sub-second (~10 Hz) large volumetric imaging ([~0.1 to 1 mm] 3) with ~1 μm spatial resolution in the condition of weak scattering and semi-transparence, which has never been achieved by other methods.

  9. Pupil function - Wikipedia

    en.wikipedia.org/wiki/Pupil_function

    The pupil function or aperture function describes how a light wave is affected upon transmission through an optical imaging system such as a camera, microscope, or the human eye. More specifically, it is a complex function of the position in the pupil [ 1 ] or aperture (often an iris ) that indicates the relative change in amplitude and phase ...