enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. General relativity - Wikipedia

    en.wikipedia.org/wiki/General_relativity

    Slow motion computer simulation of the black hole binary system GW150914 as seen by a nearby observer, during 0.33 s of its final inspiral, merge, and ringdown.The star field behind the black holes is being heavily distorted and appears to rotate and move, due to extreme gravitational lensing, as spacetime itself is distorted and dragged around by the rotating black holes.

  3. Black hole - Wikipedia

    en.wikipedia.org/wiki/Black_hole

    A black hole with the mass of a car would have a diameter of about 10 −24 m and take a nanosecond to evaporate, during which time it would briefly have a luminosity of more than 200 times that of the Sun. Lower-mass black holes are expected to evaporate even faster; for example, a black hole of mass 1 TeV/c 2 would take less than 10 −88 ...

  4. Gravitational singularity - Wikipedia

    en.wikipedia.org/wiki/Gravitational_singularity

    For example, any observer inside the event horizon of a non-rotating black hole would fall into its center within a finite period of time. The classical version of the Big Bang cosmological model of the universe contains a causal singularity at the start of time ( t =0), where all time-like geodesics have no extensions into the past.

  5. Kerr metric - Wikipedia

    en.wikipedia.org/wiki/Kerr_metric

    The Kerr metric or Kerr geometry describes the geometry of empty spacetime around a rotating uncharged axially symmetric black hole with a quasispherical event horizon.The Kerr metric is an exact solution of the Einstein field equations of general relativity; these equations are highly non-linear, which makes exact solutions very difficult to find.

  6. Kruskal–Szekeres coordinates - Wikipedia

    en.wikipedia.org/wiki/Kruskal–Szekeres_coordinates

    The Kruskal–Szekeres coordinates also apply to space-time around a spherical object, but in that case do not give a description of space-time inside the radius of the object. Space-time in a region where a star is collapsing into a black hole is approximated by the Kruskal–Szekeres coordinates (or by the Schwarzschild coordinates).

  7. Two-body problem in general relativity - Wikipedia

    en.wikipedia.org/wiki/Two-body_problem_in...

    Einstein used a more general geometry, pseudo-Riemannian geometry, to allow for the curvature of space and time that was necessary for the reconciliation; after eight years of work (1907–1915), he succeeded in discovering the precise way in which space-time should be curved in order to reproduce the physical laws observed in Nature ...

  8. McVittie metric - Wikipedia

    en.wikipedia.org/wiki/McVittie_metric

    In isotropic coordinates, the McVittie metric is given by [1] = (() / + / ()) + (+ / ()) () (+), where is the usual line element for the euclidean sphere, M is identified as the mass of the massive object, () is the usual scale factor found in the FLRW metric, which accounts for the expansion of the space-time; and () is a curvature parameter related to the scalar curvature of the 3-space as

  9. Curved spacetime - Wikipedia

    en.wikipedia.org/wiki/Curved_spacetime

    The most spectacular of Einstein's predictions was his calculation that the curvature terms in the spatial components of the spacetime interval could be measured in the bending of light around a massive body. Light has a slope of ±1 on a spacetime diagram. Its movement in space is equal to its movement in time.