enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Z-test - Wikipedia

    en.wikipedia.org/wiki/Z-test

    Difference between Z-test and t-test: Z-test is used when sample size is large (n>50), or the population variance is known. t-test is used when sample size is small (n<50) and population variance is unknown. There is no universal constant at which the sample size is generally considered large enough to justify use of the plug-in test.

  3. Sample size determination - Wikipedia

    en.wikipedia.org/wiki/Sample_size_determination

    The table shown on the right can be used in a two-sample t-test to estimate the sample sizes of an experimental group and a control group that are of equal size, that is, the total number of individuals in the trial is twice that of the number given, and the desired significance level is 0.05. [4]

  4. Chauvenet's criterion - Wikipedia

    en.wikipedia.org/wiki/Chauvenet's_criterion

    The idea behind Chauvenet's criterion finds a probability band that reasonably contains all n samples of a data set, centred on the mean of a normal distribution.By doing this, any data point from the n samples that lies outside this probability band can be considered an outlier, removed from the data set, and a new mean and standard deviation based on the remaining values and new sample size ...

  5. Paired difference test - Wikipedia

    en.wikipedia.org/wiki/Paired_difference_test

    If we only consider the means, the paired and unpaired approaches give the same result. To see this, let Y i1, Y i2 be the observed data for the i th pair, and let D i = Y i2 − Y i1. Also let D, Y 1, and Y 2 denote, respectively, the sample means of the D i, the Y i1, and the Y i2. By rearranging terms we can see that

  6. Standard score - Wikipedia

    en.wikipedia.org/wiki/Standard_score

    Comparison of the various grading methods in a normal distribution, including: standard deviations, cumulative percentages, percentile equivalents, z-scores, T-scores. In statistics, the standard score is the number of standard deviations by which the value of a raw score (i.e., an observed value or data point) is above or below the mean value of what is being observed or measured.

  7. Standard normal table - Wikipedia

    en.wikipedia.org/wiki/Standard_normal_table

    Example: To find 0.69, one would look down the rows to find 0.6 and then across the columns to 0.09 which would yield a probability of 0.25490 for a cumulative from mean table or 0.75490 from a cumulative table. To find a negative value such as -0.83, one could use a cumulative table for negative z-values [3] which yield a probability of 0.20327.

  8. Dying To Be Free - The Huffington Post

    projects.huffingtonpost.com/dying-to-be-free...

    2003 Patrick with his mother at an Easter dinner. Patrick was recuperating from surgery for a knee injury suffered during his sophomore wrestling season. * * * *

  9. 68–95–99.7 rule - Wikipedia

    en.wikipedia.org/wiki/68–95–99.7_rule

    Diagram showing the cumulative distribution function for the normal distribution with mean (μ) 0 and variance (σ 2) 1. These numerical values "68%, 95%, 99.7%" come from the cumulative distribution function of the normal distribution. The prediction interval for any standard score z corresponds numerically to (1 − (1 − Φ μ,σ 2 (z)) · 2).