enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Expectation–maximization algorithm - Wikipedia

    en.wikipedia.org/wiki/Expectationmaximization...

    Itself can be extended into the Expectation conditional maximization either (ECME) algorithm. [35] This idea is further extended in generalized expectation maximization (GEM) algorithm, in which is sought only an increase in the objective function F for both the E step and M step as described in the As a maximizationmaximization procedure ...

  3. EM algorithm and GMM model - Wikipedia

    en.wikipedia.org/wiki/EM_Algorithm_And_GMM_Model

    The EM algorithm consists of two steps: the E-step and the M-step. Firstly, the model parameters and the () can be randomly initialized. In the E-step, the algorithm tries to guess the value of () based on the parameters, while in the M-step, the algorithm updates the value of the model parameters based on the guess of () of the E-step.

  4. MM algorithm - Wikipedia

    en.wikipedia.org/wiki/Mm_algorithm

    The expectationmaximization algorithm can be treated as a special case of the MM algorithm. [1] [2] However, in the EM algorithm conditional expectations are usually involved, while in the MM algorithm convexity and inequalities are the main focus, and it is easier to understand and apply in most cases. [3]

  5. Baum–Welch algorithm - Wikipedia

    en.wikipedia.org/wiki/Baum–Welch_algorithm

    In electrical engineering, statistical computing and bioinformatics, the Baum–Welch algorithm is a special case of the expectationmaximization algorithm used to find the unknown parameters of a hidden Markov model (HMM). It makes use of the forward-backward algorithm to compute the statistics for the expectation step. The Baum–Welch ...

  6. Bayesian network - Wikipedia

    en.wikipedia.org/wiki/Bayesian_network

    Direct maximization of the likelihood (or of the posterior probability) is often complex given unobserved variables. A classical approach to this problem is the expectation-maximization algorithm , which alternates computing expected values of the unobserved variables conditional on observed data, with maximizing the complete likelihood (or ...

  7. Determining the number of clusters in a data set - Wikipedia

    en.wikipedia.org/wiki/Determining_the_number_of...

    The jump algorithm for choosing K makes use of these behaviors to identify the most likely value for the true number of clusters. Although the mathematical support for the method is given in terms of asymptotic results, the algorithm has been empirically verified to work well in a variety of data sets with reasonable dimensionality.

  8. Here’s What to Say to Comfort Someone Who Just Had a ... - AOL

    www.aol.com/heres-comfort-someone-just-had...

    Rand has seen people feel overwhelmed by expectations to get pregnant right away after a loss, she says. “If they were trying to get pregnant, they feel sort of societal and family pressures to ...

  9. Variational Bayesian methods - Wikipedia

    en.wikipedia.org/wiki/Variational_Bayesian_methods

    Variational Bayes can be seen as an extension of the expectationmaximization (EM) algorithm from maximum likelihood (ML) or maximum a posteriori (MAP) estimation of the single most probable value of each parameter to fully Bayesian estimation which computes (an approximation to) the entire posterior distribution of the parameters and latent ...