Search results
Results from the WOW.Com Content Network
Caltech Tutorial on Relativity — A simple introduction to Einstein's Field Equations. The Meaning of Einstein's Equation — An explanation of Einstein's field equation, its derivation, and some of its consequences; Video Lecture on Einstein's Field Equations by MIT Physics Professor Edmund Bertschinger. Arch and scaffold: How Einstein found ...
In general relativity, an exact solution is a solution of the Einstein field equations whose derivation does not invoke simplifying assumptions, though the starting point for that derivation may be an idealized case like a perfectly spherical shape of matter.
If one is only interested in the weak field limit of the theory, the dynamics of matter can be computed using special relativity methods and/or Newtonian laws of gravity and then the resulting stress–energy tensor can be plugged into the Einstein field equations. But if the exact solution is required or a solution describing strong fields ...
This category lists exact solutions to the Einstein field equation, an equation used in general relativity to determine the curvature of spacetime. Note that the identification of solutions to this equation can be very difficult. Identified solutions are quite noteworthy within physics research.
The Einstein field equations are nonlinear and considered difficult to solve. Einstein used approximation methods in working out initial predictions of the theory. But in 1916, the astrophysicist Karl Schwarzschild found the first non-trivial exact solution to the Einstein field equations, the Schwarzschild metric. This solution laid the ...
Einstein hypothesized that the similar experiences of weightless observers and inertial observers in special relativity represented a fundamental property of gravity, and he made this the cornerstone of his theory of general relativity, formalized in his equivalence principle. Roughly speaking, the principle states that a person in a free ...
The two-body problem in general relativity (or relativistic two-body problem) is the determination of the motion and gravitational field of two bodies as described by the field equations of general relativity. Solving the Kepler problem is essential to calculate the bending of light by gravity and the motion of a planet orbiting its sun.
In Einstein's theory of general relativity, the Schwarzschild metric (also known as the Schwarzschild solution) is an exact solution to the Einstein field equations that describes the gravitational field outside a spherical mass, on the assumption that the electric charge of the mass, angular momentum of the mass, and universal cosmological constant are all zero.