enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Cantilever method - Wikipedia

    en.wikipedia.org/wiki/Cantilever_method

    The cantilever method is an approximate method for calculating shear forces and moments developed in beams and columns of a frame or structure due to lateral loads. The applied lateral loads typically include wind loads and earthquake loads, which must be taken into consideration while designing buildings.

  3. Deflection (engineering) - Wikipedia

    en.wikipedia.org/wiki/Deflection_(engineering)

    The elastic deflection and angle of deflection (in radians) at the free end in the example image: A (weightless) cantilever beam, with an end load, can be calculated (at the free end B) using: [1] = = where

  4. Cantilever - Wikipedia

    en.wikipedia.org/wiki/Cantilever

    Like other structural elements, a cantilever can be formed as a beam, plate, truss, or slab. When subjected to a structural load at its far, unsupported end, the cantilever carries the load to the support where it applies a shear stress and a bending moment. [1] Cantilever construction allows overhanging structures without additional support.

  5. Energy release rate (fracture mechanics) - Wikipedia

    en.wikipedia.org/wiki/Energy_release_rate...

    Double cantilever beam (DCB) specimen under tensile load. J-integral path for the DCB specimen under tensile load. Consider the double cantilever beam specimen shown in the figure, where the crack centered in the beam of height has a length of , and a load is applied to open the crack. Assume that the material is linearly-elastic and that the ...

  6. Shear and moment diagram - Wikipedia

    en.wikipedia.org/wiki/Shear_and_moment_diagram

    Shear and Bending moment diagram for a simply supported beam with a concentrated load at mid-span. Shear force and bending moment diagrams are analytical tools used in conjunction with structural analysis to help perform structural design by determining the value of shear forces and bending moments at a given point of a structural element such as a beam.

  7. Euler–Bernoulli beam theory - Wikipedia

    en.wikipedia.org/wiki/Euler–Bernoulli_beam_theory

    For example, consider a static uniform cantilever beam of length with an upward point load applied at the free end. Using boundary conditions, this may be modeled in two ways. In the first approach, the applied point load is approximated by a shear force applied at the free end.

  8. Structural engineering theory - Wikipedia

    en.wikipedia.org/wiki/Structural_engineering_theory

    1.0 x Dead Load + 1.0 x Live Load. Different load cases would be used for different loading conditions. For example, in the case of design for fire a load case of 1.0 x Dead Load + 0.8 x Live Load may be used, as it is reasonable to assume everyone has left the building if there is a fire.

  9. Euler's critical load - Wikipedia

    en.wikipedia.org/wiki/Euler's_critical_load

    The critical load is the greatest load that will not cause lateral deflection (buckling). For loads greater than the critical load, the column will deflect laterally. The critical load puts the column in a state of unstable equilibrium. A load beyond the critical load causes the column to fail by buckling. As the load is increased beyond the ...