Search results
Results from the WOW.Com Content Network
In a system using segmentation, computer memory addresses consist of a segment id and an offset within the segment. [3] A hardware memory management unit (MMU) is responsible for translating the segment and offset into a physical address, and for performing checks to make sure the translation can be done and that the reference to that segment and offset is permitted.
If paging is enabled, the base address in a segment descriptor is an address in a linear paged address space divided into 4 KB pages, so when that is added to the offset in the segment, the resulting address is a linear address in that address space; in IA-32, that address is then masked to be no larger than 32 bits. The result may be looked up ...
Without paging support the segment is the physical unit swapped in and out of memory if required. With paging support the pages are usually the unit of swapping and segmentation only adds an additional level of security. Addresses in a segmented system usually consist of the segment id and an offset relative to the segment base address, defined ...
The memory model concept derives from the setup of the segment registers. For example, in the tiny model CS=DS=SS, that is the program's code, data, and stack are all contained within a single 64 KB segment. In the small memory model DS=SS, so both data and stack reside in the same segment; CS points to a different code segment of up to 64 KB.
When pure demand paging is used, pages are loaded only when they are referenced. A program from a memory mapped file begins execution with none of its pages in RAM. As the program commits page faults, the operating system copies the needed pages from a file, e.g., memory-mapped file, paging file, or a swap partition containing the page data ...
Flat memory model or linear memory model refers to a memory addressing paradigm in which "memory appears to the program as a single contiguous address space." [1] The CPU can directly (and linearly) address all of the available memory locations without having to resort to any sort of bank switching, memory segmentation or paging schemes.
Pages can be paged in and out of physical memory and the disk. The present bit can indicate what pages are currently present in physical memory or are on disk, and can indicate how to treat these different pages, i.e. whether to load a page from disk and page another page in physical memory out. The dirty bit allows for a performance optimization.
Four registers are used to refer to four segments on the 16-bit x86 segmented memory architecture. DS (data segment), CS (code segment), SS (stack segment), and ES (extra segment). Another 16-bit register can act as an offset into a given segment, and so a logical address on this platform is written segment:offset, typically in hexadecimal ...