Search results
Results from the WOW.Com Content Network
Inertia is the natural tendency of objects in motion to stay in motion and objects at rest to stay at rest, unless a force causes the velocity to change. It is one of the fundamental principles in classical physics , and described by Isaac Newton in his first law of motion (also known as The Principle of Inertia). [ 1 ]
The moment of inertia is defined as the product of mass of section and the square of the distance between the reference axis and the centroid of the section. Spinning figure skaters can reduce their moment of inertia by pulling in their arms, allowing them to spin faster due to conservation of angular momentum.
moment of inertia: kilogram meter squared (kg⋅m 2) intensity: watt per square meter (W/m 2) imaginary unit: unitless electric current: ampere (A) ^ Cartesian x-axis basis unit vector unitless current density: ampere per square meter (A/m 2) impulse
Common symbols. KE, E k, K or T: SI unit: ... The kinetic energy of an object is equal to the work, ... is the body's moment of inertia, equal to ...
The symbol for torque is ... torque on a particle is equal to the first derivative of its angular momentum with ... where I is the moment of inertia of the body ...
The moment of inertia of an object, symbolized by , is a measure of the object's resistance to changes to its rotation. The moment of inertia is measured in kilogram metre² (kg m 2). It depends on the object's mass: increasing the mass of an object increases the moment of inertia.
Newton's second law of motion states that the rate of change of a body's momentum is equal to the net force acting on it. Momentum depends on the frame of reference , but in any inertial frame it is a conserved quantity, meaning that if a closed system is not affected by external forces, its total momentum does not change.
Mechanical equilibrium, applies when an object is balanced so that the sum of the clockwise moments about a pivot is equal to the sum of the anticlockwise moments about the same pivot; Moment of inertia (=), analogous to mass in discussions of rotational motion. It is a measure of an object's resistance to changes in its rotation rate