enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Inertia - Wikipedia

    en.wikipedia.org/wiki/Inertia

    Inertia is the natural tendency of objects in motion to stay in motion and objects at rest to stay at rest, unless a force causes the velocity to change. It is one of the fundamental principles in classical physics, and described by Isaac Newton in his first law of motion (also known as The Principle of Inertia). [1]

  3. Moment of inertia - Wikipedia

    en.wikipedia.org/wiki/Moment_of_inertia

    The inertia matrix of a body depends on the choice of the reference point. There is a useful relationship between the inertia matrix relative to the center of mass and the inertia matrix relative to another point . This relationship is called the parallel axis theorem. [4] [7]

  4. List of moments of inertia - Wikipedia

    en.wikipedia.org/wiki/List_of_moments_of_inertia

    A point mass does not have a moment of inertia around its own axis, but using the parallel axis theorem a moment of inertia around a distant axis of rotation is achieved. Two point masses, m 1 and m 2 , with reduced mass μ and separated by a distance x , about an axis passing through the center of mass of the system and perpendicular to the ...

  5. Inertial frame of reference - Wikipedia

    en.wikipedia.org/wiki/Inertial_frame_of_reference

    A reference frame in which a mass point thrown from the same point in three different (non co-planar) directions follows rectilinear paths each time it is thrown, is called an inertial frame. [13] The inadequacy of the notion of "absolute space" in Newtonian mechanics is spelled out by Blagojevich: [14]

  6. Newton's laws of motion - Wikipedia

    en.wikipedia.org/wiki/Newton's_laws_of_motion

    Position, when thought of as a displacement from an origin point, is a vector: a quantity with both magnitude and direction. [9]: 1 Velocity and acceleration are vector quantities as well. The mathematical tools of vector algebra provide the means to describe motion in two, three or more dimensions.

  7. Euler's laws of motion - Wikipedia

    en.wikipedia.org/wiki/Euler's_laws_of_motion

    Euler's second law states that the rate of change of angular momentum L about a point that is fixed in an inertial reference frame (often the center of mass of the body), is equal to the sum of the external moments of force acting on that body M about that point: [1] [4] [5]

  8. Rotational energy - Wikipedia

    en.wikipedia.org/wiki/Rotational_energy

    As the Earth has a sidereal rotation period of 23.93 hours, it has an angular velocity of 7.29 × 10 −5 rad·s −1. [2] The Earth has a moment of inertia, I = 8.04 × 10 37 kg·m 2. [3] Therefore, it has a rotational kinetic energy of 2.14 × 10 29 J. Part of the Earth's rotational energy can also be tapped using tidal power.

  9. Euler's equations (rigid body dynamics) - Wikipedia

    en.wikipedia.org/wiki/Euler's_equations_(rigid...

    In an inertial frame of reference (subscripted "in"), Euler's second law states that the time derivative of the angular momentum L equals the applied torque: = For point particles such that the internal forces are central forces, this may be derived using Newton's second law.