Search results
Results from the WOW.Com Content Network
Just as a continuous-time martingale satisfies E[X t | {X τ : τ ≤ s}] − X s = 0 ∀s ≤ t, a harmonic function f satisfies the partial differential equation Δf = 0 where Δ is the Laplacian operator. Given a Brownian motion process W t and a harmonic function f, the resulting process f(W t) is also a martingale.
Malliavin introduced Malliavin calculus to provide a stochastic proof that Hörmander's condition implies the existence of a density for the solution of a stochastic differential equation; Hörmander's original proof was based on the theory of partial differential equations. His calculus enabled Malliavin to prove regularity bounds for the ...
By construction, this implies that if is a martingale, then = will be an MDS—hence the name. The MDS is an extremely useful construct in modern probability theory because it implies much milder restrictions on the memory of the sequence than independence , yet most limit theorems that hold for an independent sequence will also hold for an MDS.
Stochastic exponential of a local martingale is again a local martingale. All the formulae and properties above apply also to stochastic exponential of a complex -valued X {\displaystyle X} . This has application in the theory of conformal martingales and in the calculation of characteristic functions.
Ordinary differential equations occur in many scientific disciplines, including physics, chemistry, biology, and economics. [1] In addition, some methods in numerical partial differential equations convert the partial differential equation into an ordinary differential equation, which must then be solved.
In mathematical finance, the Black–Scholes equation, also called the Black–Scholes–Merton equation, is a partial differential equation (PDE) governing the price evolution of derivatives under the Black–Scholes model. [1]
The application of MacCormack method to the above equation proceeds in two steps; a predictor step which is followed by a corrector step. Predictor step: In the predictor step, a "provisional" value of u {\displaystyle u} at time level n + 1 {\displaystyle n+1} (denoted by u i p {\displaystyle u_{i}^{p}} ) is estimated as follows
A continuous semimartingale uniquely decomposes as X = M + A where M is a continuous local martingale and A is a continuous finite-variation process starting at zero. (Rogers & Williams 1987, p. 358) For example, if X is an Itō process satisfying the stochastic differential equation dX t = σ t dW t + b t dt, then