enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Activation function - Wikipedia

    en.wikipedia.org/wiki/Activation_function

    The activation function of a node in an artificial neural network is a function that calculates the output of the node based on its individual inputs and their weights. Nontrivial problems can be solved using only a few nodes if the activation function is nonlinear .

  3. Sigmoid function - Wikipedia

    en.wikipedia.org/wiki/Sigmoid_function

    A wide variety of sigmoid functions including the logistic and hyperbolic tangent functions have been used as the activation function of artificial neurons. Sigmoid curves are also common in statistics as cumulative distribution functions (which go from 0 to 1), such as the integrals of the logistic density , the normal density , and Student's ...

  4. Rectifier (neural networks) - Wikipedia

    en.wikipedia.org/wiki/Rectifier_(neural_networks)

    Plot of the ReLU (blue) and GELU (green) functions near x = 0. In the context of artificial neural networks, the rectifier or ReLU (rectified linear unit) activation function [1] [2] is an activation function defined as the non-negative part of its argument, i.e., the ramp function:

  5. Mathematics of artificial neural networks - Wikipedia

    en.wikipedia.org/wiki/Mathematics_of_artificial...

    A widely used type of composition is the nonlinear weighted sum, where () = (()), where (commonly referred to as the activation function [3]) is some predefined function, such as the hyperbolic tangent, sigmoid function, softmax function, or rectifier function. The important characteristic of the activation function is that it provides a smooth ...

  6. Artificial neuron - Wikipedia

    en.wikipedia.org/wiki/Artificial_neuron

    Non-monotonic, unbounded, and oscillating activation functions with multiple zeros that outperform sigmoidal and ReLU-like activation functions on many tasks have also been recently explored. The threshold function has inspired building logic gates referred to as threshold logic; applicable to building logic circuits resembling brain processing.

  7. Activation energy - Wikipedia

    en.wikipedia.org/wiki/Activation_energy

    Even without knowing A, E a can be evaluated from the variation in reaction rate coefficients as a function of temperature (within the validity of the Arrhenius equation). At a more advanced level, the net Arrhenius activation energy term from the Arrhenius equation is best regarded as an experimentally determined parameter that indicates the ...

  8. Delta rule - Wikipedia

    en.wikipedia.org/wiki/Delta_rule

    The delta rule is commonly stated in simplified form for a neuron with a linear activation function as = () While the delta rule is similar to the perceptron 's update rule, the derivation is different.

  9. Activating function - Wikipedia

    en.wikipedia.org/wiki/Activating_function

    The activating function represents the rate of membrane potential change if the neuron is in resting state before the stimulation. Its physical dimensions are V/s or mV/ms. In other words, it represents the slope of the membrane voltage at the beginning of the stimulation. [8]