Search results
Results from the WOW.Com Content Network
A honeycomb is called regular if the group of isometries preserving the tiling acts transitively on flags, where a flag is a vertex lying on an edge lying on a face lying on a cell. Every regular honeycomb is automatically uniform. However, there is just one regular honeycomb in Euclidean 3-space, the cubic honeycomb.
A regular hexagonal grid This honeycomb forms a circle packing, with circles centered on each hexagon.. The honeycomb conjecture states that a regular hexagonal grid or honeycomb has the least total perimeter of any subdivision of the plane into regions of equal area.
The hexagonal comb of the honey bee has been admired and wondered about from ancient times. The first man-made honeycomb, according to Greek mythology, is said to have been manufactured by Daedalus from gold by lost wax casting more than 3000 years ago. [2]
In the geometry of hyperbolic 3-space, the order-3-infinite hexagonal honeycomb or (6,3,∞ honeycomb) is a regular space-filling tessellation (or honeycomb) with Schläfli symbol {6,3,∞}. It has infinitely many hexagonal tiling {6,3} around each edge.
The runcicantellated hexagonal tiling honeycomb or runcitruncated order-6 tetrahedral honeycomb, t 0,2,3 {6,3,3}, has truncated tetrahedron, hexagonal prism, and rhombitrihexagonal tiling cells, with an isosceles-trapezoidal pyramid vertex figure.
In the geometry of hyperbolic 3-space, the order-7-3 hexagonal honeycomb (or 6,7,3 honeycomb) a regular space-filling tessellation (or honeycomb). Each infinite cell consists of an order-6 hexagonal tiling whose vertices lie on a 2-hypercycle , each of which has a limiting circle on the ideal sphere.
The honeycomb conjecture states that hexagonal tiling is the best way to divide a surface into regions of equal area with the least total perimeter. The optimal three-dimensional structure for making honeycomb (or rather, soap bubbles) was investigated by Lord Kelvin , who believed that the Kelvin structure (or body-centered cubic lattice) is ...
The runcinated order-6 hexagonal tiling honeycomb, t 0,3 {6,3,6}, has hexagonal tiling and hexagonal prism cells, with a triangular antiprism vertex figure. It is analogous to the 2D hyperbolic rhombihexahexagonal tiling , rr{6,6}, with square and hexagonal faces: