Search results
Results from the WOW.Com Content Network
In statistics, (between-) study heterogeneity is a phenomenon that commonly occurs when attempting to undertake a meta-analysis. In a simplistic scenario, studies whose results are to be combined in the meta-analysis would all be undertaken in the same way and to the same experimental protocols.
They relate to the validity of the often convenient assumption that the statistical properties of any one part of an overall dataset are the same as any other part. In meta-analysis, which combines the data from several studies, homogeneity measures the differences or similarities between the several studies (see also Study heterogeneity).
Cochran's test is a non-parametric statistical test to verify whether k treatments have identical effects in the analysis of two-way randomized block designs where the response variable is binary. [ 1 ] [ 2 ] [ 3 ] It is named after William Gemmell Cochran .
In psychological testing, the responses of the test taker to test items provide objective measurement data for a variety of human characteristics. [8] Some characteristics measured by psychological and educational tests include academic abilities, school performance, intelligence, motivation, etc. and these tests are frequently used to make decisions that have significant consequences on ...
A 2009 study in developmental psychology examined non-cognitive traits including blood parameters and birth weight as well as certain cognitive traits, and concluded that "greater intrasex phenotype variability in males than in females is a fundamental aspect of the gender differences in humans".
Homogeneity and heterogeneity; only ' b ' is homogeneous Homogeneity and heterogeneity are concepts relating to the uniformity of a substance, process or image.A homogeneous feature is uniform in composition or character (i.e., color, shape, size, weight, height, distribution, texture, language, income, disease, temperature, radioactivity, architectural design, etc.); one that is heterogeneous ...
A forest plot, also known as a blobbogram, is a graphical display of estimated results from a number of scientific studies addressing the same question, along with the overall results. [1] It was developed for use in medical research as a means of graphically representing a meta-analysis of the results of randomized controlled trials .
The terms random-effect meta-regression and mixed-effect meta-regression are equivalent. Although calling one a random-effect model signals the absence of fixed effects, which would technically disqualify it from being a regression model, one could argue that the modifier random-effect only adds to, not takes away from, what any regression model should include: fixed effects.