Search results
Results from the WOW.Com Content Network
A pure substance is composed of only one type of isomer of a molecule (all have the same geometrical structure). Structural isomers have the same chemical formula but different physical arrangements, often forming alternate molecular geometries with very different properties.
In a tetrahedral molecular geometry, a central atom is located at the center with four substituents that are located at the corners of a tetrahedron.The bond angles are arccos(− 1 / 3 ) = 109.4712206...° ≈ 109.5° when all four substituents are the same, as in methane (CH 4) [1] [2] as well as its heavier analogues.
[1] [2] [3] Introduced by Gilbert N. Lewis in his 1916 article The Atom and the Molecule, a Lewis structure can be drawn for any covalently bonded molecule, as well as coordination compounds. [ 4 ] Lewis structures extend the concept of the electron dot diagram by adding lines between atoms to represent shared pairs in a chemical bond.
Molecular models may be created for several reasons – as pedagogic tools for students or those unfamiliar with atomistic structures; as objects to generate or test theories (e.g., the structure of DNA); as analogue computers (e.g., for measuring distances and angles in flexible systems); or as aesthetically pleasing objects on the boundary of ...
This work is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; version 3.
The methane molecule (CH 4) is tetrahedral because there are four pairs of electrons. The four hydrogen atoms are positioned at the vertices of a tetrahedron, and the bond angle is cos −1 (− 1 ⁄ 3) ≈ 109° 28′. [16] [17] This is referred to as an AX 4 type of molecule. As mentioned above, A represents the central atom and X represents ...
The compound is the prototypical antiaromatic hydrocarbon with 4 pi electrons (or π electrons). It is the smallest [n]-annulene ([4]-annulene).Its rectangular structure is the result of a pseudo [3] - (or second order) Jahn–Teller effect, which distorts the molecule and lowers its symmetry, converting the triplet to a singlet ground state. [4]
Hofmann's 1865 ball-and-stick model of methane (CH 4). Later discoveries disproved this geometry. In 1865, German chemist August Wilhelm von Hofmann was the first to make ball-and-stick molecular models. He used such models in lecture at the Royal Institution of Great Britain. Specialist companies manufacture kits and models to order.