Search results
Results from the WOW.Com Content Network
These variables include, building material of the envelope, thicknesses of the building materials, day of the year, time of day, orientation of the surface (e.g. wall or roof, 90 degrees or 180), and wall face orientation (cardinal directions, i.e. N, NW, S, SE, etc.), to name a few.
lcm – lowest common multiple (a.k.a. least common multiple) of two numbers. LCHS – locally compact Hausdorff second countable. ld – binary logarithm (log 2). (Also written as lb.) lsc – lower semi-continuity. lerp – linear interpolation. [5] lg – common logarithm (log 10) or binary logarithm (log 2). LHS – left-hand side of an ...
2,2-Dichloro-1,1,1-trifluoroethane or HCFC-123 is considered as an alternative to CFC-11 in low pressure refrigeration and HVAC systems, and should not be used in foam blowing processes or solvent applications.
Critical temperature in degrees Celsius; ... C 3 H 3 F 5 O: 1885-48-9: 2.2 [4] 0 [d] 286 [4] 150 [7] HFC: ... C 3 H 4 F 2 Cl 2: 1112-36-3: 0.005–0.04 [b] 149 [7] HCFC:
Density (g cm-3) Boiling point (°C) K b (°C⋅kg/mol) Freezing point (°C) K f (°C⋅kg/mol) Data source; Aniline: 184.3 3.69 –5.96 –5.87 K b & K f [1] Lauric acid: 298.9 44 –3.9 Acetic acid: 1.04 117.9 3.14 16.6 –3.90 K b [1] K f [2] Acetone: 0.78 56.2 1.67 –94.8 K b [3] Benzene: 0.87 80.1 2.65 5.5 –5.12 K b & K f [2 ...
Table of specific heat capacities at 25 °C (298 K) unless otherwise noted. [citation needed] Notable minima and maxima are shown in maroon. Substance Phase Isobaric mass heat capacity c P J⋅g −1 ⋅K −1 Molar heat capacity, C P,m and C V,m J⋅mol −1 ⋅K −1 Isobaric volumetric heat capacity C P,v J⋅cm −3 ⋅K −1 Isochoric ...
The classical equipartition theorem predicts that the heat capacity ratio (γ) for an ideal gas can be related to the thermally accessible degrees of freedom (f) of a molecule by = +, =. Thus we observe that for a monatomic gas, with 3 translational degrees of freedom per atom: γ = 5 3 = 1.6666 … , {\displaystyle \gamma ={\frac {5}{3}}=1. ...
It is 35.5 J⋅K −1 ⋅mol −1 at 1500 °C, 36.9 at 2500 °C, and 37.5 at 3500 °C. [29] The last value corresponds almost exactly to the value predicted by the Equipartition Theorem, since in the high-temperature limit the theorem predicts that the vibrational degree of freedom contributes twice as much to the heat capacity as any one of ...