Search results
Results from the WOW.Com Content Network
where S n − 1 (r) is an (n − 1)-sphere of radius r (being the surface of an n-ball of radius r) and dA is the area element (equivalently, the (n − 1)-dimensional volume element). The surface area of the sphere satisfies a proportionality equation similar to the one for the volume of a ball: If A n − 1 ( r ) is the surface area of an ( n ...
In mathematics, an n-sphere or hypersphere is an -dimensional generalization of the -dimensional circle and -dimensional sphere to any non-negative integer . The circle is considered 1-dimensional, and the sphere 2-dimensional, because the surfaces themselves are 1- and 2-dimensional respectively, not because they ...
It can be realized non-degenerately in some non-Euclidean spaces, such as on the surface of a sphere or torus. For example, digon can be realised non-degenerately as a spherical lune . A monogon {1} could also be realised on the sphere as a single point with a great circle through it. [ 7 ]
For example, the class of two-dimensional Euclidean space forms includes Riemannian metrics on the Klein bottle, the Möbius strip, the torus, the cylinder S 1 × ℝ, along with the Euclidean plane. Unlike the case of two-dimensional spherical space forms, in some cases two space form structures on the same manifold are not homothetic.
A ball in n dimensions is called a hyperball or n-ball and is bounded by a hypersphere or (n−1)-sphere. Thus, for example, a ball in the Euclidean plane is the same thing as a disk, the area bounded by a circle. In Euclidean 3-space, a ball is taken to be the volume bounded by a 2-dimensional sphere. In a one-dimensional space, a ball is a ...
The cardinality of the edge set of the contact graph gives the number of touching pairs, the number of 3-cycles in the contact graph gives the number of touching triplets, and the number of tetrahedrons in the contact graph gives the number of touching quadruples (in general for a contact graph associated with a sphere packing in n dimensions ...
The n-dimensional unit sphere — called the n-sphere for brevity, and denoted as S n — generalizes the familiar circle (S 1) and the ordinary sphere (S 2). The n-sphere may be defined geometrically as the set of points in a Euclidean space of dimension n + 1 located at a unit distance from the origin.
For example, one sphere that is described in Cartesian coordinates with the equation x 2 + y 2 + z 2 = c 2 can be described in spherical coordinates by the simple equation r = c. (In this system—shown here in the mathematics convention—the sphere is adapted as a unit sphere, where the radius is set to unity and then can generally be ignored ...