enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Table of divisors - Wikipedia

    en.wikipedia.org/wiki/Table_of_divisors

    a composite number has more than just 1 and itself as divisors; that is, d(n) > 2; a highly composite number has a number of positive divisors that is greater than any lesser number; that is, d(n) > d(m) for every positive integer m < n. Counterintuitively, the first two highly composite numbers are not composite numbers.

  3. Highly composite number - Wikipedia

    en.wikipedia.org/wiki/Highly_composite_number

    the sequence of exponents must be non-increasing, that is ; otherwise, by exchanging two exponents we would again get a smaller number than n with the same number of divisors (for instance 18 = 2 1 × 3 2 may be replaced with 12 = 2 2 × 3 1; both have six divisors).

  4. Divisor function - Wikipedia

    en.wikipedia.org/wiki/Divisor_function

    Divisor function σ 0 (n) up to n = 250 Sigma function σ 1 (n) up to n = 250 Sum of the squares of divisors, σ 2 (n), up to n = 250 Sum of cubes of divisors, σ 3 (n) up to n = 250. In mathematics, and specifically in number theory, a divisor function is an arithmetic function related to the divisors of an integer.

  5. Table of prime factors - Wikipedia

    en.wikipedia.org/wiki/Table_of_prime_factors

    The divisors of n are all products of some or all prime factors of n (including the empty product 1 of no prime factors). The number of divisors can be computed by increasing all multiplicities by 1 and then multiplying them. Divisors and properties related to divisors are shown in table of divisors.

  6. Superior highly composite number - Wikipedia

    en.wikipedia.org/wiki/Superior_highly_composite...

    The first 15 superior highly composite numbers, 2, 6, 12, 60, 120, 360, 2520, 5040, 55440, 720720, 1441440, 4324320, 21621600, 367567200, 6983776800 (sequence A002201 in the OEIS) are also the first 15 colossally abundant numbers, which meet a similar condition based on the sum-of-divisors function rather than the number of divisors. Neither ...

  7. Greatest common divisor - Wikipedia

    en.wikipedia.org/wiki/Greatest_common_divisor

    The elements 2 and 1 + √ −3 are two maximal common divisors (that is, any common divisor which is a multiple of 2 is associated to 2, the same holds for 1 + √ −3, but they are not associated, so there is no greatest common divisor of a and b.

  8. 840 (number) - Wikipedia

    en.wikipedia.org/wiki/840_(number)

    It is the smallest number divisible by every natural number from 1 to 10, except 9. It is the largest number k such that all coprime quadratic residues modulo k are squares. In this case, they are 1, 121, 169, 289, 361 and 529.

  9. 2,147,483,647 - Wikipedia

    en.wikipedia.org/wiki/2,147,483,647

    Euler ascertained that 2 31 − 1 = 2147483647 is a prime number; and this is the greatest at present known to be such, and, consequently, the last of the above perfect numbers [i.e., 2 30 (2 31 − 1)], which depends upon this, is the greatest perfect number known at present, and probably the greatest that ever will be discovered; for as they ...