enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Sage Manifolds - Wikipedia

    en.wikipedia.org/wiki/Sage_Manifolds

    This allows to define easily complex manifolds, by setting the field to C. The class ManifoldOpenSubset has been suppressed: open subsets of manifolds are now instances of TopologicalManifold or DifferentiableManifold (since an open subset of a top/diff manifold is a top/diff manifold by itself)

  3. Differential geometry - Wikipedia

    en.wikipedia.org/wiki/Differential_geometry

    The simplest results are those in the differential geometry of curves and differential geometry of surfaces. Starting with the work of Riemann , the intrinsic point of view was developed, in which one cannot speak of moving "outside" the geometric object because it is considered to be given in a free-standing way.

  4. List of differential geometry topics - Wikipedia

    en.wikipedia.org/wiki/List_of_differential...

    Chern class; Pontrjagin class; spin structure; differentiable map. submersion; immersion; Embedding. Whitney embedding theorem; Critical value. Sard's theorem; Saddle point; Morse theory; Lie derivative; Hairy ball theorem; Poincaré–Hopf theorem; Stokes' theorem; De Rham cohomology; Sphere eversion; Frobenius theorem (differential topology ...

  5. Characteristic class - Wikipedia

    en.wikipedia.org/wiki/Characteristic_class

    In other words, a characteristic class associates to each principal G-bundle in () an element c(P) in H*(X) such that, if f : Y → X is a continuous map, then c(f*P) = f*c(P). On the left is the class of the pullback of P to Y; on the right is the image of the class of P under the induced map in cohomology.

  6. Generalized Stokes theorem - Wikipedia

    en.wikipedia.org/wiki/Generalized_Stokes_theorem

    In vector calculus and differential geometry the generalized Stokes theorem (sometimes with apostrophe as Stokes' theorem or Stokes's theorem), also called the Stokes–Cartan theorem, [1] is a statement about the integration of differential forms on manifolds, which both simplifies and generalizes several theorems from vector calculus.

  7. Integral curve - Wikipedia

    en.wikipedia.org/wiki/Integral_curve

    Let M be a Banach manifold of class C r with r ≥ 2. As usual, TM denotes the tangent bundle of M with its natural projection π M : TM → M given by : (,). A vector field on M is a cross-section of the tangent bundle TM, i.e. an assignment to every point of the manifold M of a tangent vector to M at that point.

  8. Cotangent space - Wikipedia

    en.wikipedia.org/wiki/Cotangent_space

    All cotangent spaces at points on a connected manifold have the same dimension, equal to the dimension of the manifold.All the cotangent spaces of a manifold can be "glued together" (i.e. unioned and endowed with a topology) to form a new differentiable manifold of twice the dimension, the cotangent bundle of the manifold.

  9. Stochastic analysis on manifolds - Wikipedia

    en.wikipedia.org/wiki/Stochastic_analysis_on...

    Stochastic differential geometry provides insight into classical analytic problems, and offers new approaches to prove results by means of probability. For example, one can apply Brownian motion to the Dirichlet problem at infinity for Cartan-Hadamard manifolds [4] or give a probabilistic proof of the Atiyah-Singer index theorem. [5]