Search results
Results from the WOW.Com Content Network
On the negative side, including K 0 as a graph requires that many well-defined formulas for graph properties include exceptions for it (for example, either "counting all strongly connected components of a graph" becomes "counting all non-null strongly connected components of a graph", or the definition of connected graphs has to be modified not ...
The nullity of a graph in the mathematical subject of graph theory can mean either of two unrelated numbers. If the graph has n vertices and m edges, then: In the matrix theory of graphs, the nullity of the graph is the nullity of the adjacency matrix A of the graph. The nullity of A is given by n − r where r is the rank of the adjacency matrix.
A graph with only vertices and no edges is known as an edgeless graph. The graph with no vertices and no edges is sometimes called the null graph or empty graph, but the terminology is not consistent and not all mathematicians allow this object. Normally, the vertices of a graph, by their nature as elements of a set, are distinguishable.
Analogous results for better behaved classes of continuous functions do exist, for example the Lipschitz functions, whose set of non-differentiability points must be a Lebesgue null set (Rademacher's theorem). When we try to draw a general continuous function, we usually draw the graph of a function which is Lipschitz or otherwise well-behaved.
In mathematics, for example in the study of statistical properties of graphs, a null model is a type of random object that matches one specific object in some of its features, or more generally satisfies a collection of constraints, but which is otherwise taken to be an unbiasedly random structure.
A symbol for the empty set. Common notations for the empty set include "{ }", "", and "∅".The latter two symbols were introduced by the Bourbaki group (specifically André Weil) in 1939, inspired by the letter Ø (U+00D8 Ø LATIN CAPITAL LETTER O WITH STROKE) in the Danish and Norwegian alphabets. [2]
A path is a particularly simple example of a tree, and in fact the paths are exactly the trees in which no vertex has degree 3 or more. A disjoint union of paths is called a linear forest . Paths are fundamental concepts of graph theory, described in the introductory sections of most graph theory texts.
For example, in linear algebra, the null space of a linear mapping, also known as kernel, is the set of vectors which map to the null vector under that mapping. In statistics, a null hypothesis is a proposition that no effect or relationship exists between populations and phenomena. It is the hypothesis which is presumed true—unless ...