enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Dijkstra's algorithm - Wikipedia

    en.wikipedia.org/wiki/Dijkstra's_algorithm

    Dijkstra's algorithm starts with infinite distances and tries to improve them step by step: Create a set of all unvisited nodes: the unvisited set. Assign to every node a distance from start value: for the starting node, it is zero, and for all other nodes, it is infinity, since initially no path is known to these nodes.

  3. Shortest path problem - Wikipedia

    en.wikipedia.org/wiki/Shortest_path_problem

    Find the Shortest Path: Use a shortest path algorithm (e.g., Dijkstra's algorithm, Bellman-Ford algorithm) to find the shortest path from the source node to the sink node in the residual graph. Augment the Flow: Find the minimum capacity along the shortest path. Increase the flow on the edges of the shortest path by this minimum capacity.

  4. Critical path method - Wikipedia

    en.wikipedia.org/wiki/Critical_path_method

    The project has two critical paths: activities B and C, or A, D, and F – giving a minimum project time of 7 months with fast tracking. Activity E is sub-critical, and has a float of 1 month. The critical path method ( CPM ), or critical path analysis ( CPA ), is an algorithm for scheduling a set of project activities. [ 1 ]

  5. Chinese postman problem - Wikipedia

    en.wikipedia.org/wiki/Chinese_postman_problem

    The T-join problem is to find a T-join with the minimum possible number of edges or the minimum possible total weight. For any T, a smallest T-join (when it exists) necessarily consists of | | paths that join the vertices of T in pairs. The paths will be such that the total length or total weight of all of them is as small as possible.

  6. A* search algorithm - Wikipedia

    en.wikipedia.org/wiki/A*_search_algorithm

    The algorithm described so far only gives the length of the shortest path. To find the actual sequence of steps, the algorithm can be easily revised so that each node on the path keeps track of its predecessor. After this algorithm is run, the ending node will point to its predecessor, and so on, until some node's predecessor is the start node.

  7. Google Maps - Wikipedia

    en.wikipedia.org/wiki/Google_Maps

    Google Maps' location tracking is regarded by some as a threat to users' privacy, with Dylan Tweney of VentureBeat writing in August 2014 that "Google is probably logging your location, step by step, via Google Maps", and linked users to Google's location history map, which "lets you see the path you've traced for any given day that your ...

  8. Minimum-cost flow problem - Wikipedia

    en.wikipedia.org/wiki/Minimum-cost_flow_problem

    The minimum-cost flow problem (MCFP) is an optimization and decision problem to find the cheapest possible way of sending a certain amount of flow through a flow network. A typical application of this problem involves finding the best delivery route from a factory to a warehouse where the road network has some capacity and cost associated.

  9. Range minimum query - Wikipedia

    en.wikipedia.org/wiki/Range_minimum_query

    Range minimum query reduced to the lowest common ancestor problem.. Given an array A[1 … n] of n objects taken from a totally ordered set, such as integers, the range minimum query RMQ A (l,r) =arg min A[k] (with 1 ≤ l ≤ k ≤ r ≤ n) returns the position of the minimal element in the specified sub-array A[l …