enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Gauss–Legendre quadrature - Wikipedia

    en.wikipedia.org/wiki/GaussLegendre_quadrature

    w i are quadrature weights, and; x i are the roots of the nth Legendre polynomial. This choice of quadrature weights w i and quadrature nodes x i is the unique choice that allows the quadrature rule to integrate degree 2n − 1 polynomials exactly. Many algorithms have been developed for computing GaussLegendre quadrature rules.

  3. Gauss–Legendre method - Wikipedia

    en.wikipedia.org/wiki/GaussLegendre_method

    GaussLegendre methods are implicit Runge–Kutta methods. More specifically, they are collocation methods based on the points of GaussLegendre quadrature. The GaussLegendre method based on s points has order 2s. [1] All GaussLegendre methods are A-stable. [2] The GaussLegendre method of order two is the implicit midpoint rule.

  4. Collocation method - Wikipedia

    en.wikipedia.org/wiki/Collocation_method

    The GaussLegendre methods use the points of GaussLegendre quadrature as collocation points. The GaussLegendre method based on s points has order 2s. [2] All GaussLegendre methods are A-stable. [3] In fact, one can show that the order of a collocation method corresponds to the order of the quadrature rule that one would get using the ...

  5. Gaussian quadrature - Wikipedia

    en.wikipedia.org/wiki/Gaussian_quadrature

    This exact rule is known as the GaussLegendre quadrature rule. The quadrature rule will only be an accurate approximation to the integral above if f (x) is well-approximated by a polynomial of degree 2n − 1 or less on [−1, 1]. The GaussLegendre quadrature rule is not typically used for integrable functions with endpoint singularities ...

  6. Gauss pseudospectral method - Wikipedia

    en.wikipedia.org/wiki/Gauss_pseudospectral_method

    An enhancement to the Chebyshev pseudospectral method that uses a Clenshaw–Curtis quadrature was developed. [18] The LPM uses Lagrange polynomials for the approximations, and LegendreGauss–Lobatto (LGL) points for the orthogonal collocation. A costate estimation procedure for the Legendre pseudospectral method was also developed. [19]

  7. Pseudo-spectral method - Wikipedia

    en.wikipedia.org/wiki/Pseudo-spectral_method

    Special examples are the Gaussian quadrature for polynomials and the Discrete Fourier Transform for plane waves. It should be stressed that the grid points and weights, x i , w i {\displaystyle x_{i},w_{i}} are a function of the basis and the number N {\displaystyle N} .

  8. Gauss–Laguerre quadrature - Wikipedia

    en.wikipedia.org/wiki/Gauss–Laguerre_quadrature

    In numerical analysis Gauss–Laguerre quadrature (named after Carl Friedrich Gauss and Edmond Laguerre) is an extension of the Gaussian quadrature method for approximating the value of integrals of the following kind: + (). In this case

  9. Stieltjes polynomials - Wikipedia

    en.wikipedia.org/wiki/Stieltjes_polynomials

    They are unrelated to the Stieltjes polynomial solutions of differential equations. Stieltjes originally considered the case where the orthogonal polynomials P n are the Legendre polynomials. The Gauss–Kronrod quadrature formula uses the zeros of Stieltjes polynomials.