Search results
Results from the WOW.Com Content Network
A primality test is an algorithm for determining whether an input number is prime.Among other fields of mathematics, it is used for cryptography.Unlike integer factorization, primality tests do not generally give prime factors, only stating whether the input number is prime or not.
Safe primes are also important in cryptography because of their use in discrete logarithm-based techniques like Diffie–Hellman key exchange. If 2p + 1 is a safe prime, the multiplicative group of integers modulo 2p + 1 has a subgroup of large prime order.
In number theory, a provable prime is an integer that has been calculated to be prime using a primality-proving algorithm.Boot-strapping techniques using Pocklington primality test are the most common ways to generate provable primes for cryptography.
This is an accepted version of this page This is the latest accepted revision, reviewed on 20 January 2025. Practice and study of secure communication techniques "Secret code" redirects here. For the Aya Kamiki album, see Secret Code. "Cryptology" redirects here. For the David S. Ware album, see Cryptology (album). This article needs additional citations for verification. Please help improve ...
Prime ideals, which generalize prime elements in the sense that the principal ideal generated by a prime element is a prime ideal, are an important tool and object of study in commutative algebra, algebraic number theory and algebraic geometry.
Hashing is a one-way operation that is used to transform data into the compressed message digest. Additionally, the integrity of the message can be measured with hashing. Conversely, encryption is a two-way operation that is used to transform plaintext into cipher-text and then vice versa. In encryption, the confidentiality of a message is ...
A prime sieve works by creating a list of all integers up to a desired limit and progressively removing composite numbers (which it directly generates) until only primes are left. This is the most efficient way to obtain a large range of primes; however, to find individual primes, direct primality tests are more efficient [citation needed].
If the largest prime factor of a number is p then the number is B-smooth for any B ≥ p. In many scenarios B is prime, but composite numbers are permitted as well. A number is B-smooth if and only if it is p-smooth, where p is the largest prime less than or equal to B.