Search results
Results from the WOW.Com Content Network
Identification of the most senior group. If more than one functional group, if any, is present, the one with highest group precedence should be used. Identification of the ring or chain with the maximum number of senior groups. Identification of the ring or chain with the most senior elements (In order: N, P, Si, B, O, S, C).
Aldehyde structure. In organic chemistry, an aldehyde (/ ˈ æ l d ɪ h aɪ d /) is an organic compound containing a functional group with the structure R−CH=O. [1] The functional group itself (without the "R" side chain) can be referred to as an aldehyde but can also be classified as a formyl group.
Ketones are trigonal planar around the ketonic carbon, with C–C–O and C–C–C bond angles of approximately 120°. Ketones differ from aldehydes in that the carbonyl group (C=O) is bonded to two carbons within a carbon skeleton. In aldehydes, the carbonyl is bonded to one carbon and one hydrogen and are located at the ends of carbon chains.
In chemistry, an acyl group is a moiety derived by the removal of one or more hydroxyl groups from an oxoacid, [1] including inorganic acids. It contains a double-bonded oxygen atom and an organyl group ( R−C=O ) or hydrogen in the case of formyl group ( H−C=O ).
The name combines the suffix 'ol' from the alcohol and the prefix depending on the carbonyl group, either 'ald' for an aldehyde, or 'ket' for a ketone, in which case it referred to as a 'ketol'. An aldol may also use the term β-hydroxy aldehyde (or β-hydroxy ketone for a ketol). The term "aldol" may refer to 3-hydroxybutanal. [1] [2]
An aldose is a monosaccharide (a simple sugar) with a carbon backbone chain with a carbonyl group on the endmost carbon atom, making it an aldehyde, and hydroxyl groups connected to all the other carbon atoms. Aldoses can be distinguished from ketoses, which have the carbonyl group away from the end of the molecule, and are therefore ketones.
In the case of ketones, the conversion is called a keto-enol tautomerism, although this name is often more generally applied to all such tautomerizations. Usually the equilibrium constant is so small that the enol is undetectable spectroscopically. In some compounds with two (or more) carbonyls, the enol form becomes dominant.
The ketone group is the double-bonded oxygen. In organic chemistry, a ketose is a monosaccharide containing one ketone (>C=O) group per molecule. [1] [2] The simplest ketose is dihydroxyacetone ((CH 2 OH) 2 C=O), which has only three carbon atoms. It is the only ketose with no optical activity.