Search results
Results from the WOW.Com Content Network
The fact that the Pauli matrices, along with the identity matrix I, form an orthogonal basis for the Hilbert space of all 2 × 2 complex matrices , over , means that we can express any 2 × 2 complex matrix M as = + where c is a complex number, and a is a 3-component, complex vector.
Multi-qubit Pauli matrices can be written as products of single-qubit Paulis on disjoint qubits. Alternatively, when it is clear from context, the tensor product symbol can be omitted, i.e. unsubscripted Pauli matrices written consecutively represents tensor product rather than matrix product. For example:
The Pauli group is generated by the Pauli matrices, and like them it is named after Wolfgang Pauli. The Pauli group on n {\displaystyle n} qubits, G n {\displaystyle G_{n}} , is the group generated by the operators described above applied to each of n {\displaystyle n} qubits in the tensor product Hilbert space ( C 2 ) ⊗ n {\displaystyle ...
In mathematics, the matrix exponential is a matrix function on square matrices analogous to the ordinary exponential function. It is used to solve systems of linear differential equations. In the theory of Lie groups, the matrix exponential gives the exponential map between a matrix Lie algebra and the corresponding Lie group.
Another way of saying this is that a unitary matrix is the exponential of i times a Hermitian matrix, so that the additive conserved real quantity, the phase, is only well-defined up to an integer multiple of 2π. Only when the unitary symmetry matrix is part of a family that comes arbitrarily close to the identity are the conserved real ...
The Pauli matrices abide by the physicists' convention for Lie algebras. In that convention, Lie algebra elements are multiplied by i, the exponential map (below) is defined with an extra factor of i in the exponent and the structure constants remain the same, but the definition of them acquires a factor of i.
Given a unit vector in 3 dimensions, for example (a, b, c), one takes a dot product with the Pauli spin matrices to obtain a spin matrix for spin in the direction of the unit vector. The eigenvectors of that spin matrix are the spinors for spin-1/2 oriented in the direction given by the vector. Example: u = (0.8, -0.6, 0) is a unit vector ...
Example: Spinor in a magnetic field [ edit ] The Hamiltonian of a spin-1/2 particle in a magnetic field can be written as [ 3 ] H = μ σ ⋅ B , {\displaystyle H=\mu \mathbf {\sigma } \cdot \mathbf {B} ,} where σ {\displaystyle \mathbf {\sigma } } denote the Pauli matrices , μ {\displaystyle \mu } is the magnetic moment , and B is the ...