Search results
Results from the WOW.Com Content Network
Graph of a polynomial of degree 4, with 3 critical points and four real roots (crossings of the x axis) (and thus no complex roots). If one or the other of the local minima were above the x axis, or if the local maximum were below it, or if there were no local maximum and one minimum below the x axis, there would only be two real roots (and two complex roots).
Graph of a polynomial function of degree 4, with its 4 roots and 3 critical points. + + + + = where a ≠ 0. The quartic is the highest order polynomial equation that can be solved by radicals in the general case (i.e., one in which the coefficients can take any value).
The complete graph K 5, a quartic graph with 5 vertices, the smallest possible quartic graph. The Chvátal graph, another quartic graph with 12 vertices, the smallest quartic graph that both has no triangles and cannot be colored with three colors. [2] The Folkman graph, a quartic graph with 20 vertices, the smallest semi-symmetric graph. [3]
Graph of a cubic function with 3 real roots ... (second-degree) and quartic (fourth-degree) ... if r is a root of a polynomial with real coefficients, ...
The following names are assigned to polynomials according to their degree: [2] [3] [4] Special case – zero (see § Degree of the zero polynomial, below) Degree 0 – non-zero constant [5] Degree 1 – linear; Degree 2 – quadratic; Degree 3 – cubic; Degree 4 – quartic (or, if all terms have even degree, biquadratic) Degree 5 – quintic
For polynomials with real or complex coefficients, it is not possible to express a lower bound of the root separation in terms of the degree and the absolute values of the coefficients only, because a small change on a single coefficient transforms a polynomial with multiple roots into a square-free polynomial with a small root separation, and ...
The cruciform curve, or cross curve is a quartic plane curve given by the equation = where a and b are two parameters determining the shape of the curve. The cruciform curve is related by a standard quadratic transformation, x ↦ 1/x, y ↦ 1/y to the ellipse a 2 x 2 + b 2 y 2 = 1, and is therefore a rational plane algebraic curve of genus zero.
This is illustrated by Wilkinson's polynomial: the roots of this polynomial of degree 20 are the 20 first positive integers; changing the last bit of the 32-bit representation of one of its coefficient (equal to –210) produces a polynomial with only 10 real roots and 10 complex roots with imaginary parts larger than 0.6.