Ad
related to: lenntech ionic balance calculator equation chemistry worksheet pdf examples
Search results
Results from the WOW.Com Content Network
The Born–Landé equation is a means of calculating the lattice energy of a crystalline ionic compound. In 1918 [ 1 ] Max Born and Alfred Landé proposed that the lattice energy could be derived from the electrostatic potential of the ionic lattice and a repulsive potential energy term.
In order to flatten the steep learning curve aqion provides an introduction to fundamental water-related topics in form of a "chemical pocket calculator". Second. The program mediates between two terminological concepts: The calculations are performed in the "scientific realm" of thermodynamics (activities, speciation, log K values, ionic ...
The Born–Mayer equation is an equation that is used to calculate the lattice energy of a crystalline ionic compound. It is a refinement of the Born–Landé equation by using an improved repulsion term.
In thermochemistry, a thermochemical equation is a balanced chemical equation that represents the energy changes from a system to its surroundings. One such equation involves the enthalpy change, which is denoted with Δ H {\displaystyle \Delta H} In variable form, a thermochemical equation would appear similar to the following:
A chemical equation is the symbolic representation of a chemical reaction in the form of symbols and chemical formulas.The reactant entities are given on the left-hand side and the product entities are on the right-hand side with a plus sign between the entities in both the reactants and the products, and an arrow that points towards the products to show the direction of the reaction. [1]
In theoretical chemistry, Specific ion Interaction Theory (SIT theory) is a theory used to estimate single-ion activity coefficients in electrolyte solutions at relatively high concentrations. [ 1 ] [ 2 ] It does so by taking into consideration interaction coefficients between the various ions present in solution.
The calculated lattice energy gives a good estimation for the Born–Landé equation; the real value differs in most cases by less than 5%. Furthermore, one is able to determine the ionic radii (or more properly, the thermochemical radius) using the Kapustinskii equation when the lattice energy is known.
The strength of a bond can be estimated by comparing the atomic radii of the atoms that form the bond to the length of bond itself. For example, the atomic radius of boron is estimated at 85 pm, [10] while the length of the B–B bond in B 2 Cl 4 is 175 pm. [11] Dividing the length of this bond by the sum of each boron atom's radius gives a ratio of
Ad
related to: lenntech ionic balance calculator equation chemistry worksheet pdf examples