enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Fourth power - Wikipedia

    en.wikipedia.org/wiki/Fourth_power

    n 4 = n × n × n × n. Fourth powers are also formed by multiplying a number by its cube. Furthermore, they are squares of squares. Some people refer to n 4 as n tesseracted, hypercubed, zenzizenzic, biquadrate or supercubed instead of “to the power of 4”. The sequence of fourth powers of integers, known as biquadrates or tesseractic ...

  3. Exponentiation - Wikipedia

    en.wikipedia.org/wiki/Exponentiation

    The term exponent originates from the Latin exponentem, the present participle of exponere, meaning "to put forth". [3] The term power (Latin: potentia, potestas, dignitas) is a mistranslation [4] [5] of the ancient Greek δύναμις (dúnamis, here: "amplification" [4]) used by the Greek mathematician Euclid for the square of a line, [6 ...

  4. Fermat's Last Theorem - Wikipedia

    en.wikipedia.org/wiki/Fermat's_Last_Theorem

    This is because the exponents of x, y, and z are equal (to n), so if there is a solution in Q, then it can be multiplied through by an appropriate common denominator to get a solution in Z, and hence in N. Equivalent statement 3: x n + y n = 1, where integer n ≥ 3, has no non-trivial solutions x, y ∈ Q.

  5. Proof of Fermat's Last Theorem for specific exponents

    en.wikipedia.org/wiki/Proof_of_Fermat's_Last...

    That implies that 3 divides u, and one may express u = 3w in terms of a smaller integer, w. Since u is divisible by 4, so is w; hence, w is also even. Since u and v are coprime, so are v and w. Therefore, neither 3 nor 4 divide v. Substituting u by w in the equation for z 3 yields −z 3 = 6w(9w 2 + 3v 2) = 18w(3w 2 + v 2)

  6. Exponential function - Wikipedia

    en.wikipedia.org/wiki/Exponential_function

    The power series definition of the exponential function makes sense for square matrices (for which the function is called the matrix exponential) and more generally in any unital Banach algebra B. In this setting, e 0 = 1 , and e x is invertible with inverse e − x for any x in B .

  7. Tetration - Wikipedia

    en.wikipedia.org/wiki/Tetration

    The term hyperpower [4] is a natural combination of hyper and power, which aptly describes tetration. The problem lies in the meaning of hyper with respect to the hyperoperation sequence. When considering hyperoperations, the term hyper refers to all ranks, and the term super refers to rank 4, or tetration.

  8. Fermat's theorem on sums of two squares - Wikipedia

    en.wikipedia.org/wiki/Fermat's_theorem_on_sums_of...

    On the other hand, the primes 3, 7, 11, 19, 23 and 31 are all congruent to 3 modulo 4, and none of them can be expressed as the sum of two squares. This is the easier part of the theorem, and follows immediately from the observation that all squares are congruent to 0 (if number squared is even) or 1 (if number squared is odd) modulo 4.

  9. List of logarithmic identities - Wikipedia

    en.wikipedia.org/wiki/List_of_logarithmic_identities

    These are the three main logarithm laws/rules/principles, [3] from which the other properties listed above can be proven. Each of these logarithm properties correspond to their respective exponent law, and their derivations/proofs will hinge on those facts. There are multiple ways to derive/prove each logarithm law – this is just one possible ...