Search results
Results from the WOW.Com Content Network
In particle physics, tracking is the process of reconstructing the trajectory (or track) of electrically charged particles in a particle detector known as a tracker. The particles entering such a tracker leave a precise record of their passage through the device, by interaction with suitably constructed components and materials.
The magnetic field of larger magnets can be obtained by modeling them as a collection of a large number of small magnets called dipoles each having their own m. The magnetic field produced by the magnet then is the net magnetic field of these dipoles; any net force on the magnet is a result of adding up the forces on the individual dipoles.
In physics, the magnetomotive force (abbreviated mmf or MMF, symbol ) is a quantity appearing in the equation for the magnetic flux in a magnetic circuit, Hopkinson's law. [1] It is the property of certain substances or phenomena that give rise to magnetic fields : F = Φ R , {\displaystyle {\mathcal {F}}=\Phi {\mathcal {R}},} where Φ is the ...
Lorentz force on a charged particle (of charge q) in motion (velocity v), used as the definition of the E field and B field. Here subscripts e and m are used to differ between electric and magnetic charges .
In particle physics, rigidity is a measure of the resistance of a particle to deflection by magnetic fields, defined as the particle's momentum divided by its charge. For a fully ionised nucleus moving at relativistic speed, this is equivalent to the energy per atomic number.
These similarities led Lord Kelvin to propose a formal definition of magnetic field [2] in 1851: [4] Any space at every point of which there is a finite magnetic force is called ‘a field of magnetic force’ or (magnetic being understood) simply ‘a field of force,’ or sometimes ‘a magnetic field’.
In the electric and magnetic field formulation there are four equations that determine the fields for given charge and current distribution. A separate law of nature, the Lorentz force law, describes how the electric and magnetic fields act on charged particles and currents. By convention, a version of this law in the original equations by ...
The magnetic flux density does not measure how strong a magnetic field is, but only how strong the magnetic flux is in a given point or at a given distance (usually right above the magnet's surface). For the intrinsic order of magnitude of magnetic fields, see: Orders of magnitude (magnetic moment) .