enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Earth's magnetic field - Wikipedia

    en.wikipedia.org/wiki/Earth's_magnetic_field

    A magnetic field is a vector field, but if it is expressed in Cartesian components X, Y, Z, each component is the derivative of the same scalar function called the magnetic potential. Analyses of the Earth's magnetic field use a modified version of the usual spherical harmonics that differ by a multiplicative factor.

  3. Magnetic field - Wikipedia

    en.wikipedia.org/wiki/Magnetic_field

    The magnetic field of larger magnets can be obtained by modeling them as a collection of a large number of small magnets called dipoles each having their own m. The magnetic field produced by the magnet then is the net magnetic field of these dipoles; any net force on the magnet is a result of adding up the forces on the individual dipoles.

  4. Maglev - Wikipedia

    en.wikipedia.org/wiki/Maglev

    The magnetic field is produced either by superconducting magnets (as in JR–Maglev) or by an array of permanent magnets (as in Inductrack). The repulsive and attractive force in the track is created by an induced magnetic field in wires or other conducting strips in the track.

  5. Tracking (particle physics) - Wikipedia

    en.wikipedia.org/wiki/Tracking_(particle_physics)

    In particle physics, tracking is the process of reconstructing the trajectory (or track) of electrically charged particles in a particle detector known as a tracker. The particles entering such a tracker leave a precise record of their passage through the device, by interaction with suitably constructed components and materials.

  6. Geomagnetic reversal - Wikipedia

    en.wikipedia.org/wiki/Geomagnetic_reversal

    The magnetic field of the Earth, and of other planets that have magnetic fields, is generated by dynamo action in which convection of molten iron in the planetary core generates electric currents which in turn give rise to magnetic fields. [12] In simulations of planetary dynamos, reversals often emerge spontaneously from the underlying dynamics.

  7. Positioning system - Wikipedia

    en.wikipedia.org/wiki/Positioning_system

    Magnetic positioning is an IPS (Indoor positioning system) solution that takes advantage of the magnetic field anomalies typical of indoor settings by using them as distinctive place recognition signatures. The first citation of positioning based on magnetic anomaly can be traced back to military applications in 1970. [10]

  8. Gauss (unit) - Wikipedia

    en.wikipedia.org/wiki/Gauss_(unit)

    10 −6 –10 −3 G – the magnetic field of Galactic molecular clouds. Typical magnetic field strengths within the interstellar medium of the Milky Way are ~5 μG. 0.25–0.60 G – the Earth's magnetic field at its surface; 4 G – near Jupiter's equator; 25 G – the Earth's magnetic field in its core [4] 50 G – a typical refrigerator magnet

  9. Magnetic dip - Wikipedia

    en.wikipedia.org/wiki/Magnetic_dip

    Magnetic dip causes the compass to dip upward or downward depending on the latitude. Illustration of magnetic dip from Norman's book, The Newe Attractive. Magnetic dip, dip angle, or magnetic inclination is the angle made with the horizontal by Earth's magnetic field lines. This angle varies at different points on Earth's surface.