Search results
Results from the WOW.Com Content Network
2 O, the 2s orbital of oxygen is mixed with the premixed hydrogen orbitals, forming a new bonding (2a 1) and antibonding orbital (4a 1). Similarly, the 2p orbital (b 1) and the other premixed hydrogen 1s orbitals (b 1) are mixed to make bonding orbital 1b 1 and antibonding orbital 2b 1. The two remaining 2p orbitals are unmixed.
The hydrogen of the donor is protic and therefore can act as a Lewis acid and the acceptor is the Lewis base. Hydrogen bonds are represented as H···Y system, where the dots represent the hydrogen bond. Liquids that display hydrogen bonding (such as water) are called associated liquids. [citation needed]
The hydrogen bonds of water are around 23 kJ/mol (compared to a covalent O-H bond at 492 kJ/mol). Of this, it is estimated that 90% is attributable to electrostatics, while the remaining 10% is partially covalent. [95] These bonds are the cause of water's high surface tension [96] and capillary forces.
Although hydrogen bonding is a relatively weak attraction compared to the covalent bonds within the water molecule itself, it is responsible for several of the water's physical properties. These properties include its relatively high melting and boiling point temperatures: more energy is required to break the hydrogen bonds between water molecules.
The first theoretical study of the water dimer was an ab initio calculation published in 1968 by Morokuma and Pedersen. [10] Since then, the water dimer has been the focus of sustained interest by theoretical chemists concerned with hydrogen bonding—a search of the CAS database up to 2006 returns over 1100 related references (73 of them in 2005).
Structural Biochemistry/Chemical Bonding/Hydrogen bonds; Structural Biochemistry/Polarity; Chemical Sciences: A Manual for CSIR-UGC National Eligibility Test for Lectureship and JRF/X-ray crystallography; Structural Biochemistry/Unique Properties/Polarity and Hydrogen Bonding; Principles of Biochemistry/Water: The solvent of the cell
Starch gelatinization is a process of breaking down of intermolecular bonds of starch molecules in the presence of water and heat, allowing the hydrogen bonding sites (the hydroxyl hydrogen and oxygen) to engage more water. This irreversibly dissolves the starch granule in water. Water acts as a plasticizer.
The energy from hydrogen bonds between molecules. These three parameters can be treated as co-ordinates for a point in three dimensions also known as the Hansen space. The nearer two molecules are in this three-dimensional space, the more likely they are to dissolve into each other.