enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Eigenvalues and eigenvectors - Wikipedia

    en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors

    For a matrix, eigenvalues and eigenvectors can be used to decompose the matrix—for example by diagonalizing it. Eigenvalues and eigenvectors give rise to many closely related mathematical concepts, and the prefix eigen-is applied liberally when naming them:

  3. Eigenvalue algorithm - Wikipedia

    en.wikipedia.org/wiki/Eigenvalue_algorithm

    Given an n × n square matrix A of real or complex numbers, an eigenvalue λ and its associated generalized eigenvector v are a pair obeying the relation [1] =,where v is a nonzero n × 1 column vector, I is the n × n identity matrix, k is a positive integer, and both λ and v are allowed to be complex even when A is real.l When k = 1, the vector is called simply an eigenvector, and the pair ...

  4. Eigendecomposition of a matrix - Wikipedia

    en.wikipedia.org/wiki/Eigendecomposition_of_a_matrix

    The eigenvalues are real. The eigenvectors of A −1 are the same as the eigenvectors of A. Eigenvectors are only defined up to a multiplicative constant. That is, if Av = λv then cv is also an eigenvector for any scalar c ≠ 0. In particular, −v and e iθ v (for any θ) are also eigenvectors.

  5. Jacobi eigenvalue algorithm - Wikipedia

    en.wikipedia.org/wiki/Jacobi_eigenvalue_algorithm

    When the eigenvalues (and eigenvectors) of a symmetric matrix are known, the following values are easily calculated. Singular values The singular values of a (square) matrix A {\displaystyle A} are the square roots of the (non-negative) eigenvalues of A T A {\displaystyle A^{T}A} .

  6. QR algorithm - Wikipedia

    en.wikipedia.org/wiki/QR_algorithm

    In numerical linear algebra, the QR algorithm or QR iteration is an eigenvalue algorithm: that is, a procedure to calculate the eigenvalues and eigenvectors of a matrix.The QR algorithm was developed in the late 1950s by John G. F. Francis and by Vera N. Kublanovskaya, working independently.

  7. Power iteration - Wikipedia

    en.wikipedia.org/wiki/Power_iteration

    In mathematics, power iteration (also known as the power method) is an eigenvalue algorithm: given a diagonalizable matrix, the algorithm will produce a number , which is the greatest (in absolute value) eigenvalue of , and a nonzero vector , which is a corresponding eigenvector of , that is, =.

  8. Inverse iteration - Wikipedia

    en.wikipedia.org/wiki/Inverse_iteration

    In some real-time applications one needs to find eigenvectors for matrices with a speed of millions of matrices per second. In such applications, typically the statistics of matrices is known in advance and one can take as an approximate eigenvalue the average eigenvalue for some large matrix sample.

  9. Quadratic eigenvalue problem - Wikipedia

    en.wikipedia.org/wiki/Quadratic_eigenvalue_problem

    Quadratic eigenvalue problems arise naturally in the solution of systems of second order linear differential equations without forcing: ″ + ′ + = Where (), and ,,.If all quadratic eigenvalues of () = + + are distinct, then the solution can be written in terms of the quadratic eigenvalues and right quadratic eigenvectors as