Search results
Results from the WOW.Com Content Network
The definition of equivalence relations implies that the equivalence classes form a partition of , meaning, that every element of the set belongs to exactly one equivalence class. The set of the equivalence classes is sometimes called the quotient set or the quotient space of S {\displaystyle S} by ∼ , {\displaystyle \,\sim \,,} and is ...
In mathematics, equivalent definitions are used in two somewhat different ways. First, within a particular mathematical theory (for example, Euclidean geometry ), a notion (for example, ellipse or minimal surface ) may have more than one definition.
Given any set , an equivalence relation over the set [] of all functions can be obtained as follows. Two functions are deemed equivalent when their respective sets of fixpoints have the same cardinality, corresponding to cycles of length one in a permutation.
A set of polygons in an Euler diagram This set equals the one depicted above since both have the very same elements.. In mathematics, a set is a collection of different [1] things; [2] [3] [4] these things are called elements or members of the set and are typically mathematical objects of any kind: numbers, symbols, points in space, lines, other geometrical shapes, variables, or even other ...
An equivalent (symbol: officially equiv; [1] unofficially but often Eq [2]) is the amount of a substance that reacts with (or is equivalent to) an arbitrary amount (typically one mole) of another substance in a given chemical reaction. It is an archaic quantity that was used in chemistry and the biological sciences (see Equivalent weight § In ...
In constructive mathematics, "not empty" and "inhabited" are not equivalent: every inhabited set is not empty but the converse is not always guaranteed; that is, in constructive mathematics, a set that is not empty (where by definition, "is empty" means that the statement () is true) might not have an inhabitant (which is an such that ).
A -finite measure on a measurable space (,) is called atomic or purely atomic if every measurable set of positive measure contains an atom. This is equivalent to say that there is a countable partition of formed by atoms up to a null set. [3]
In mathematics, a structure on a set (or on some sets) refers to providing it (or them) with certain additional features (e.g. an operation, relation, metric, or topology). Τhe additional features are attached or related to the set (or to the sets), so as to provide it (or them) with some additional meaning or significance.