Search results
Results from the WOW.Com Content Network
In mathematics, a limit is the value that a function (or sequence) approaches as the argument (or index) approaches some value. [1] Limits of functions are essential to calculus and mathematical analysis, and are used to define continuity, derivatives, and integrals.
The definition of limit given here does not depend on how (or whether) f is defined at p. Bartle [9] refers to this as a deleted limit, because it excludes the value of f at p. The corresponding non-deleted limit does depend on the value of f at p, if p is in the domain of f. Let : be a real-valued function.
Calculus is the mathematical study of continuous change, in the same way that geometry is the study of shape, and algebra is the study of generalizations of arithmetic operations. Originally called infinitesimal calculus or "the calculus of infinitesimals", it has two major branches, differential calculus and integral calculus.
Continuing informally, a (singly-infinite) sequence has a limit if it approaches some point x, called the limit, as n becomes very large. That is, for an abstract sequence ( a n ) (with n running from 1 to infinity understood) the distance between a n and x approaches 0 as n → ∞, denoted
However, glossaries like this one are useful for looking up, comparing and reviewing large numbers of terms together. You can help enhance this page by adding new terms or writing definitions for existing ones. This glossary of calculus is a list of definitions about calculus, its sub-disciplines, and related fields.
This is a list of limits for common functions such as elementary functions. In this article, the terms a , b and c are constants with respect to x . Limits for general functions
Examples abound, one of the simplest being that for a double sequence a m,n: it is not necessarily the case that the operations of taking the limits as m → ∞ and as n → ∞ can be freely interchanged. [4] For example take a m,n = 2 m − n. in which taking the limit first with respect to n gives 0, and with respect to m gives ∞.
A limit of a sequence of points () in a topological space is a special case of a limit of a function: the domain is in the space {+}, with the induced topology of the affinely extended real number system, the range is , and the function argument tends to +, which in this space is a limit point of .